
Kai Lampka, Simon Perathoner, Lothar Thiele

TEC Group Meeting, 24 June 2009
Performance Analysis of Embedded Real-Time Systems

Analytic Real-Time Analysis

- Solution of closed form expressions
- Examples: RTC, SymTA/S, MAST, ...

 - **+** Good scalability
 - **+** Fast analysis
 - **–** Limited to few specific measures (e.g. delays, buffer sizes)
 - **–** Systems restricted to specific models
 - **–** Overly conservative results

State-based Real-Time Analysis

- Model checking of properties
- Examples: Timed Automata (TA), FSM, ...

 - **+** Verification of functional and non-functional properties
 - **+** Modeling power
 - **+** Exact results
 - **–** Poor scalability
 - **–** Slow verification
 - **} State space explosion
New Compositional Framework for Hybrid Analysis

Analytic

State-based

Analytic

Interfaces

Analytic

Analytic

Analytic

Analytic
Motivation for Hybrid Approach

1. The obtained performance metrics are not destructively over-approximated
 (Tighter analysis results compared to purely analytical abstraction)

2. The problem of state space explosion is limited to the level of isolated components
 (Faster verification compared to purely state-based models)
Interfacing Real-Time Calculus and Timed Automata

\[\alpha' = f(\alpha, \beta) \]

\[\alpha' = f(\alpha, \beta) \]
Contributions

• Pattern for conversion of abstract event stream models (such as PJD or arrival curves) to a network of cooperating TA

• Proof of correctness and completeness

• Pattern for derivation of abstract event stream models from a TA-based system model

• Implementation and Case Study
Related work

- **Event Count Automata**

- **CATS Tool**

- **Efficient Model-Checking for Real-Time Task Networks**

Real-Time Calculus (RTC)

Compositional abstraction
Timed Automata (TA)

System Declarations
channel on, off;
clock x, y;
enum phases
{g = 1, r, y} s;

\[y \leq 64,800 \]
\[y = 86400 \]
\[y > 64800 \&\& s \neq g \]
\[y \leq 64,800 \mid s \neq r \]
\[x \leq 100 \]
\[x = 0, s = y \]
\[x = 100, s = g \]
\[x = 1, s = r \]
\[x > 200 \]
\[x \leq 200 \]
\[x = 0 \]
Interface RTC \rightarrow TA

How to represent arrival curves as TA?
Principle

1. Decompose arrival curves to set of simpler curve components
 → Set of linear staircase functions

2. Represent each curve component as TA (Leaky Bucket pattern)
 → Set of simple TA

3. Synchronize all TA such to obtain same event stream model as described by arrival curve
 → Network of synchronized TA
Linear arrival curves

Upper arrival curve

\[\alpha^u(\Delta) = N^u + \left[\frac{\Delta}{\delta^u} \right] \]

Max fill level: \(N^u \)
Fill rate: \(1/\delta^u \)
Event emission allowed if fill level > 0

Automaton for linear upper arrival curve (UTA)
Linear arrival curves

Lower arrival curve

\[\alpha^l(\Delta) = \max \{0, N^l + \left\lfloor \frac{\Delta}{\delta^l} \right\rfloor \} \]

Max fill level: \(|N^l| \)

Fill rate: \(1 / \delta^l \)

Event emission enforced if maximum fill level reached

Automaton for linear lower arrival curve (LTA)
Linear arrival curves

Combination of lower and upper arrival curves

N^u N^l δ^u δ^l Δt # events

UTA

LTA

Synchronization

$x = 0,$ $b = \min(b+1, \text{BMAX})$

$x == \text{Delta}$

$b > 0$

event?

if (b==\text{BMAX}) $x = 0,$ $b--$

LTA

$x = 0,$ $b++$

$x == \text{Delta}$

if (b==0) $x = 0,$ $b = \max(b-1, 0)$
Convex and concave patterns

Composition of linear staircase functions

\[\alpha^u = \min\{\alpha_1^u, \alpha_2^u, \alpha_3^u\} \]

\[\alpha^l = \max\{0, \alpha_1^l, \alpha_2^l\} \]
Convex and concave patterns

- Event generation only if all UTA permit it (AND composition)
- Single LTA can enforce event generation (OR composition)
General arrival curves

How to represent non-convex/concave patterns?

Use min/max operators locally on subsets of UTA/LTA
Complexity

Run-time of verification increases exponentially with number of clocks

→ Approximate arrival curves with few staircase functions

e.g.

\[
\begin{align*}
& d = 0 \lor d \leq p - j : \quad N^u = \left\lceil \frac{i}{p} \right\rceil + 1; \quad N^l = \left\lfloor \frac{i}{p} \right\rfloor; \quad \delta^u = \delta^l = p \\
& d > 0 \land d > p - j : \quad N_1^u = 1; \quad \delta_1^u = d; \quad N_2^u = \left\lceil \frac{i}{p} \right\rceil + 1 \\
& \quad N^l = \left\lfloor \frac{i}{p} \right\rfloor; \quad \delta_2^u = \delta^l = p
\end{align*}
\]
Interface TA → RTC

How to derive output arrival curves from a TA sub-system model?
Key parameters of curve (e.g. max burst) are determined by appropriate observer TA and binary search.
Interface TA → RTC

- Verify compliance of system output with a number of UTA (N_i, δ_i) and LTA (N_i, δ_i) (Search strategy: Fix one parameter and modify the other by binary search)

- Combine obtained linear staircase functions by min and max operators

→ Yields convex/concave approximation of system output
Case Study

CPU1: Load-dependent frequency adaptation

- Characterize output of T1
- Determine delays and required buffer sizes

166 MHz if backlog < 4
500 MHz otherwise

CPU 1

10^6 cycles

CPU 2

350 MHz

Event source A

Event sink A

Event source B

Event sink B

p = 7ms
j = 28ms
d = 1ms

p = 7ms
j = 23ms
d = 6ms

166 MHz

Buf1

CPU 1

T1

10^6 cycles

Buf2

CPU 2

T2

10^6 cycles

Buf3

T3

10^6 cycles

Buf1

CPU 1

T1

10^6 cycles

Buf2

CPU 2

T2

10^6 cycles

Buf3

T3

10^6 cycles
Case Study

TA model for CPU1
Case Study

Results of performance analysis

<table>
<thead>
<tr>
<th></th>
<th>Max delay [ms]</th>
<th>Max buffer [events]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T_1</td>
<td>T_2</td>
</tr>
<tr>
<td>RTC</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>TA + RTC</td>
<td>25</td>
<td>5.5</td>
</tr>
<tr>
<td>TA</td>
<td>25</td>
<td>4.6</td>
</tr>
</tbody>
</table>

![Diagram of event flow through CPUs](image)
Case Study

Delay computation for T2

\[\Delta t \]

\[\beta_{CPU2}^{\alpha,\beta} \]

\[\alpha_{1,RTC}^{\mu} \]

\[\alpha_{1,TA}^{\mu} \]

\[del_{2,RTC} = 8 \]

\[del_{2,TA+RTC} = 5.5 \]

events

CPU 1

Event source A

Event source B

CPU 2

Event sink A

Event sink B
Case Study

Results of performance analysis

<table>
<thead>
<tr>
<th></th>
<th>Max delay [ms]</th>
<th>Max buffer [events]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T₁</td>
<td>T₂</td>
</tr>
<tr>
<td>RTC</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>TA + RTC</td>
<td>25</td>
<td>5.5</td>
</tr>
<tr>
<td>TA</td>
<td>25</td>
<td>4.6</td>
</tr>
</tbody>
</table>

Run-times

<table>
<thead>
<tr>
<th></th>
<th>RTC</th>
<th>TA + RTC</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total run-time</td>
<td>< 1s</td>
<td>11min</td>
<td>1h</td>
</tr>
</tbody>
</table>
Conclusions

• Hybrid and compositional analysis method that couples analytical approach (RTC) with state-based approach (TA)

• Permits to trade off analysis accuracy against verification time

• Key principle: Represent arrival curves by min/max of linear staircase functions