

Influence of different system abstractions on the performance analysis of distributed real-time systems

TRESOR seminar, EPFL Lausanne

29. March 2007

Simon Perathoner, Ernesto Wandeler, Lothar Thiele

Computer Engineering and Networks Laboratory
ETH Zürich, Switzerland

Outline

Motivation

Abstractions

Benchmarks

Conclusions

System level performance analysis

Formal analysis methods

Distributed system

Abstraction 3

$$r_i = C_i + \sum_{\forall j \in hp(i)} \lceil \frac{r_i}{T_j} \rceil C_j$$

Performance values

Analysis method 3

Motivating questions

- What is the influence of the different models on the analysis accuracy?
- Does abstraction matter?
- Which abstraction is best suited for a given system?

Evaluation and comparison of abstractions is needed!

How can we compare different abstractions?

What makes a direct comparison difficult?

- Many aspects can not be quantified
- Models cover different scenarios:

Intention

Compare models and methods that analyze the timing properties of distributed systems:

- SymTA/S [Richter et al.]
- MPA-RTC [Thiele et al.]
- MAST [González Harbour et al.]
- Timed automata based analysis [Yi et al.]

• ...

Approach

 Leiden Workshop on Distributed Embedded Systems: http://www.tik.ee.ethz.ch/~leideno5/

 Define a set of benchmark examples that cover common area

 Define benchmark examples that show the power of each method

Expected (long term) results

Understand the modeling power of different methods

Understand the relation between models and analysis accuracy

Improve methods by combining ideas and abstractions

Contributions

- We define a set of benchmark systems aimed at the evaluation of performance analysis techniques
- We apply different analysis methods to the benchmark systems and compare the results obtained in terms of accuracy and analysis times
- We point out several analysis difficulties and investigate the causes for deviating results

Outline

Motivation

Abstractions

Benchmarks

Conclusions

Abstraction 1 - Holistic scheduling

Basic concept: extend concepts of classical scheduling theory to distributed systems

Holistic scheduling – MAST tool

MAST - The Modeling and Analysis Suite for Real-Time Applications [González Harbour *et al.*]

Abstrction 2 – The SymTA/S approach

Basic concept: Application of classical scheduling techniques at

resource level and propagation of results to next

component

Problem:

The local analysis techniques require the input event streams to fit given standard event models

Solution: Use appropriate interfaces: EMIFs & EAFs

SymTA/S - Tool

Abstraction 3 – MPA-RTC

Abstraction 3 – MPA-RTC

Abstraction 4 - TA based performance analysis

Verification of performance properties by model checking (UPPAAL)

Exact performance values

periodic stream

Outline

Motivation

Abstractions

Benchmarks

Conclusions

Benchmarks

- Pay burst only once
- Complex activation pattern
- Variable feedback
- Cyclic dependencies
- AND/OR task activation
- Intra-context information
- Workload correlation
- Data dependencies

Benchmark 1 – Complex activation pattern

Benchmark 1 – Analysis results

Benchmark 1 – Result interpretation

 $P_{13} = 65 \text{ ms}$

Benchmark 1 – Worst case Delay I2-O2

Benchmark 2 – Variable feedback

Benchmark 2 – Analysis results

Benchmark 3 – Cyclic dependencies

Benchmark 3 – Analysis results

Scenario 1: priority T1 = high priority T3 = low

Benchmark 3 – Analysis results

Scenario 2: priority T1 = low priority T3 = high

Analysis times [s]

		B1	B2	B3 (sc.1)	B3 (sc.2)	В4
MPA-RTC	min	0.60	0.03	0.01	0.04	0.03
	med	1.06	0.04	0.01	0.15	0.05
	max	19.72	0.08	0.04	0.30	0.20
SymTA/S	min	0.05	0.03	0.03	0.03	0.06
	med	0.09	0.05	0.06	0.34	0.09
	max	1.50	0.23	0.09	0.80	0.31
MAST	min	-	< 0.5	< 0.5	< 0.5	< 0.5
	med	_	< 0.5	< 0.5	< 0.5	< 0.5
	max	-	< 0.5	< 0.5	< 0.5	< 0.5
Timed aut.	min	18.0	< 0.5	< 0.5	< 0.5	< 0.5
	med	34.5	< 0.5	1.0	< 0.5	< 0.5
	max	60.5	< 0.5	52.0	5.5	< 0.5
Simulation	min	1.0	< 0.5	0.5	0.5	< 0.5
	med	1.0	< 0.5	0.5	0.5	< 0.5
	max	1.0	< 0.5	0.5	0.5	< 0.5

Outline

Motivation

Abstractions

Benchmarks

Conclusions

Discussion

- Approximation of complex event streams with standard event models can lead to poor performance predictions at local level
- Holistic approaches better in the presence of correlations among task activations (e.g. data dependencies)
- Cyclic dependencies represent a serious pitfall for the accuracy of compositional analysis methods
- Holistic methods less appropriate for timing properties referred to the actual release time of an event within a large jitter interval

Conclusions

- The analysis accuracy and the analysis time depend highly on the specific system characteristics
- None of the analysis methods performed best in all benchmarks
- The analysis results of the different approaches are remarkable different even for apparently basic systems
- The choice of an appropriate analysis abstraction matters
- The problem to provide accurate performance predictions for general systems is still far from solved

Thank you!

Simon Perathoner perathoner@tik.ee.ethz.ch