
Institut für
Technische I nformatik und
Kommunikationsnetze

MA-2006-05

Evaluation and Comparison of

Performance Analysis Methods for

Distributed Embedded Systems

Master’s thesis

presented by

Simon Perathoner
Politecnico di Milano, Italy

Supervisors:

Prof. Dr. Lothar Thiele, Dipl. Ing. Ernesto Wandeler
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology, Zürich

Prof. Dr. William Fornaciari
Dipartimento di Elettronica e Informazione

Politecnico di Milano

March 2006

to my family

iii

iv

Acknowledgements

First of all I would like to thank Prof. Dr. William Fornaciari for supporting
me in writing this thesis abroad.

I would also like to express my sincere gratitude to Prof. Dr. Lothar Thiele
for giving me the opportunity to write this thesis in his research group at
the Computer Engineering and Networks Lab of the Swiss Federal Institute of
Technology (ETH) Zürich. In particular, I would like to thank him for giving
me the opportunity to take part in the ARTIST2 Workshop on Distributed
Embedded Systems 2005 in Leiden, The Netherlands, which has considerably
influenced the outcomes of this thesis.

Most of all I wish to thank Dipl. Ing. Ernesto Wandeler for his constant sup-
port throughout the whole project and for his ability to motivate me. Without
his valuable input and advice this work would never have been possible.

I am also grateful to Dr. Alexandre Maxiaguine and Dipl. Ing. Simon
Künzli for their help during this thesis work.

Finally, my warmest thanks go to my parents and my brother for their love
and support during my studies.

v

vi

Abstract

In this thesis we evaluate and compare a number of system level performance
analysis methods for distributed embedded systems. We discuss different cri-
teria for their classification and comparison and evaluate some concrete per-
formance analysis techniques with respect to these criteria. In particular, we
examine the modeling power and usability of various approaches, apply the
performance analysis methods to a set of benchmark systems and compare
the obtained results. We show that there are important differences between
methods in terms of modeling effort and accuracy by highlighting some mod-
eling difficulties and analyzing pitfalls of the different formal approaches. Fur-
ther we present an extendible open-source library for performance simulation
of distributed embedded systems based on SystemC and compare the hard per-
formance bounds provided by formal analysis methods with the performance
estimations obtained by simulation.

vii

viii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 2

1.3 Overview . 3

1.4 List of abbreviations . 3

2 Performance analysis of distributed embedded systems 5

2.1 Distributed embedded systems 5

2.2 Performance metrics . 6

2.3 Requirements for performance analysis methods 7

3 Approaches to performance analysis 9

3.1 Classification . 9

3.2 Simulation based methods . 9

3.3 Holistic scheduling . 12

3.3.1 Schedulability analysis for distributed systems 13

3.3.2 Performance analysis for systems with data dependencies 14

3.3.3 Performance analysis for systems with control dependencies 15

3.3.4 The Modeling and Analysis Suite for Real-Time Applica-
tions (MAST) . 17

3.4 Compositional scheduling analysis using standard event models . 17

3.4.1 Standard event models . 18

3.4.2 The SymTA/S analysis approach 19

3.4.3 Extensions . 21

3.5 Modular Performance Analysis with Real Time Calculus 22

3.5.1 Variability characterization curves 23

3.5.2 Analysis and resource sharing 24

3.5.3 Extensions . 27

3.6 Timed automata based performance analysis 28

3.6.1 Modeling the environment 29

ix

3.6.2 Modeling the hardware resources 29

3.6.3 Performance analysis . 30

3.7 Remarks . 32

4 PESIMDES - An extendible performance simulation library 35

4.1 Motivation . 35

4.2 Performance metrics and modeling scope 36

4.3 Implementation concepts . 38

4.3.1 Event tokens and task activation buffers 39

4.3.2 Input stream generators 40

4.3.3 Resource sharing . 43

4.4 Future extensions . 46

5 Comparison of performance analysis methods 49

5.1 Comparison criteria . 49

5.2 Comparison of modeling scope and performance metrics 51

5.3 Comparison of usability . 52

6 Case studies - Comparison in numbers 57

6.1 Case study 1: Pay burst only once 59

6.2 Case study 2: Cyclic dependencies 62

6.3 Case study 3: Variable Feedback 65

6.4 Case study 4: AND/OR task activation 68

6.5 Case study 5: Intra-context information 75

6.6 Case study 6: Workload correlations 77

6.7 Case study 7: Data dependencies 81

6.8 Overview . 83

7 Conclusions 87

7.1 Conclusions . 87

7.2 Outlook . 88

A An extendible data format for the description of distributed

embedded systems 91

A.1 Motivation . 91

A.2 Example . 91

A.3 Description of the data format - XML Schema 94

B PESIMDES User Guide 99

B.1 Setup . 99

x

B.2 Modeling . 99
B.3 Simulation . 102

C Case studies - System models 105

C.1 Models case study 1: Pay burst only once 106
C.2 Models case study 2: Cyclic dependencies 111
C.3 Models case study 3: Variable Feedback 116
C.4 Models case study 4: AND/OR task activation 121
C.5 Models case study 5: Intra-context information 128
C.6 Models case study 6: Workload correlations 133
C.7 Models case study 7: Data dependencies 137

D Task description (German) 141

xi

xii

Chapter 1

Introduction

1.1 Motivation

One of the major challenges in the design process of distributed embedded sys-
tems is to estimate performance characteristics of the final system implemen-
tation in the early design stages. In particular, during a system-level design
process a designer faces several questions related to the system performance:
Do the timing properties of a certain architecture meet the design requirements?
What is the on-chip memory demand? What are the different CPU and bus
utilizations? Which resource acts as a bottleneck? These and other similar
questions are generally hard to answer for embedded system architectures that
are highly heterogeneous, parallel and distributed and thus inherently complex.

Nevertheless, accurate performance predictions are essential for several rea-
sons. First of all they are crucial in the domain of hard real-time applications,
where provable guarantees of system performance are indispensable. In addi-
tion, higher standards of usability are now increasingly being applied to soft
real-time systems, as well. Further, performance analysis plays a fundamental
role in the design process of embedded systems. In particular, performance
analysis is necessary to drive the design space exploration: different implemen-
tation variants in terms of partitioning, allocation and binding can only be
evaluated on the basis of reliable performance predictions. And finally, the
high market pressure to maximize the performance and minimize the price of
embedded systems no longer permits designers to overallocate system resources
in order to compensate for vague performance predictions.

Several different approaches to the performance analysis of distributed em-
bedded systems can be found in the literature. However, the various approaches
are very heterogenous in terms of modeling scope, modeling effort, tool support,
accuracy and scalability and there is a lack of literature on their classification
and comparison. It is difficult for a designer to ascertain which performance

2 Chapter 1

analysis methods can be applied to a certain system and in particular which
method is most suitable for his individual needs.

In this thesis we address this problem by evaluating, classifying and com-
paring different performance analysis methods.

1.2 Contributions

• We give an overview of approaches to the performance analysis of dis-
tributed embedded systems. We describe a number of concrete techniques
that have been proposed so far and demonstrate their application.

• We discuss several criteria for the classification and comparison of perfor-
mance analysis methods and evaluate a number of techniques with respect
to these criteria. In particular we examine the modeling power, scalability
and usability of various approaches.

• We then apply the different performance analysis methods to a number
of benchmark systems defined by researchers of the ARTIST2 Network
of Excellence on Embedded Systems Design1. We compare the results
obtained in terms of accuracy and consider the required modeling and
analysis effort. Further, we compare the hard performance bounds pro-
vided by formal analysis methods with worst-case estimations obtained
by simulation.

• We present an extendible open-source library for performance simula-
tion of distributed embedded systems based on SystemC, which we call
PESIMDES. It is a repository of reusable modules that facilitates the
system-level modeling and simulation of large distributed embedded sys-
tems using SystemC.

• We introduce a tool-independent and extendible data format for the de-
scription of distributed embedded systems and their performance analysis.
This format is a first step towards an automated combination of several
performance analysis tools.

1in the context of the ARTIST2 Workshop on Distributed Embedded Systems 2005
(http://www.lorentzcenter.nl/lc/web/2005/20051121/info.php3?wsid=177)

3

1.3 Overview

• In Chapter 2 we lay the foundations for the work presented. In particular
we describe the principal characteristics of distributed embedded systems
and the relevant performance metrics. Moreover, we identify the require-
ments for performance analysis methods.

• Chapter 3 gives an overview of approaches to performance analysis and
describes a number of concrete analysis methods.

• In Chapter 4 we present PESIMDES, an extendible open-source library
for performance simulation of distributed embedded systems based on
SystemC.

• In Chapter 5 we discuss several criteria for the classification and compar-
ison of performance analysis methods. Further, we evaluate and compare
the techniques presented in Chapter 3 with regard to these criteria.

• In Chapter 6 we provide a number of case studies on performance analysis.
In particular, we apply the performance analysis methods described in
Chapter 3 to several benchmark systems and compare the results.

• Chapter 7 contains conclusions and perspectives for the future.

1.4 List of abbreviations

CAN Controller area network
EDF Earliest deadline first
FP Fixed priority
GPS Generalized processor sharing
MAST Modeling and Analysis Suite for Real-Time Applications
PESIMDES Performance Simulation of Distributed Embedded Systems
RM Rate monotonic
SymTA/S Symbolic Timing Analysis for Systems
TA Timed automata
TDMA Time division multiple access
WCET Worst case execution time
WCRT Worst case response time

Table 1.1: List of abbreviations used in this thesis

4 Chapter 1

Chapter 2

Performance analysis of distributed

embedded systems

2.1 Distributed embedded systems

Embedded systems are special purpose computing systems that are closely in-
tegrated into their environment. Typically, they are embedded into a larger
product. In contrast to general purpose computing systems, embedded systems
are dedicated to a specific application domain. This means that they execute
only few applications, which are entirely known at design time. In particular,
they are typically not programmable by the end user.

In general embedded systems must be efficient in terms of power consump-
tion, size and cost. In addition, they usually have to be highly dependable, as
a malfunction or breakdown of the device they control is not acceptable.

For many embedded systems not only the availability and the correctness of
the computations is relevant, but also the timeliness of the computed results.
Such systems with precise timing requirements are called real-time embedded
systems. Their temporal behavior in terms of computation times, latencies and
end-to-end delays is a functional system requirement. This means that a right
answer arriving too late (or even too early) is wrong. Thus, real-time does not
simply mean ’fast’, but is a synonym for ’timely’ and ’predictable’. In particular,
real-time systems are called hard, if a missed deadline is not acceptable. All
other embedded systems with timing constraints are called soft.

In most cases the timing constraints concern the reaction of the embedded
system to events generated by the environment. In particular, embedded sys-
tems that must execute at a pace determined by the environment are called
reactive systems. Examples are the control system of a nuclear power plant or
the video processing system of a set-top box.

The embedding into a larger product and the constraints imposed by a

6 Chapter 2

special application domain very often lead to distributed implementations. In
particular physical, performance, safety and modularity constraints require dis-
tributed solutions. Distributed embedded systems consist of several hardware
components that communicate via an interconnection network. Often the net-
work is a shared resource that is contended for by several processing units.
For instance the network can be a data bus that handles various data streams.
Usually, the individual computing nodes are not synchronized and communi-
cate via message passing. They have a high degree of independency and make
autonomous decisions concerning resource access and scheduling. Therefore, it
is a particularly complex task to maintain global state information.

In addition, in many cases each computing node has an individual func-
tionality and a particular local environment. Thus, each node is provided with
specific and adapted hardware resources, which leads to highly heterogeneous
implementations. For instance in a car the embedded control units responsi-
ble for engine control, power train control and stability control have a highly
heterogeneous composition.

Based on the above description, it becomes clear that heterogeneous and
distributed embedded systems are inherently complex to design and analyze.

2.2 Performance metrics

In [14] Marwedel indicates the following five metrics for the evaluation of the
efficiency of an embedded system:

• Power consumption

• Code-size

• Run-time efficiency1

• Weight

• Cost

All these metrics can be subject to design requirements of the system.
Therefore, in order to evaluate admissible system implementations and drive
the state space exploration, appropriate predictions of these system character-
istics are required in early design stages. Hence, in a broad sense, they can all
be considered objectives of early performance analysis.

1comprehends the amount of allocated hardware resources, clock frequencies and supply
voltages

Performance analysis of distributed embedded systems 7

However, in most of the performance analysis methods for real-time embed-
ded systems the focus is on the analysis of timing aspects. In particular, the
designer is interested in best-case and worst-case delays, as he needs to know if
the end-to-end latencies of the designed system meet the real-time requirements.

Further, in most embedded systems it is not acceptable that portions of
a data stream are lost or retained due to buffer overflows. Therefore, it is
essential for the designer to know if the allocated data buffers between the
various computing nodes of the distributed system are large enough to contain
the worst-case amount of data. In other words, he is interested in the worst-case
buffer fill levels of the designed system.

On the basis of the above requirements, most of the performance analysis
methods that can be found in the literature for real-time systems are targeted
at one or both of the following performance metrics:

• End-to-end delays

• Memory requirements (in terms of buffer spaces)

2.3 Requirements for performance analysis methods

An ideal performance analysis method is accurate, fast and easy to use. There
are, however, also other requirements that a performance analysis technique
should fulfill. In this section we pick up and extend the list of requirements for
performance analysis methods given in [25].

Correctness

A performance analysis approach should produce correct results. In the
case of hard real-time embedded systems correct means that the deter-
mined results are hard upper (lower) bounds for the worst-case (best-case)
performance of the system. In other words, there are no reachable system
states such that the determined bounds are violated.

Accuracy

The calculated upper (lower) performance bounds should be close to the
actual worst-case (best-case) performance of the system.

Analysis effort

The analysis of a distributed embedded system should be cheap in terms
of analysis time and computational effort. This is particularly important
if the performance analysis is used to drive a design space exploration.
In this case the performance analysis is executed repeatedly in order to

8 Chapter 2

evaluate several different system implementations and a short analysis
time for a single evaluation is essential.

Modeling effort

A designer should be able to set up a system model for performance
analysis with little effort. Also, an existing model should be easy to
reconfigure, which is fundamental for design space exploration.

Reusability

An ideal performance analysis method should be reusable across different
abstraction levels. This means that it should permit designers to model
and analyze a system with different levels of detail. In particular, it should
be easy to refine an existing system model.

Modularity

Performance analysis methods are not necessarily required to be modular
(in the next chapter we will also consider holistic approaches), but mod-
ularity can have several advantages. For instance modular performance
analysis methods are typically more scalable and easier to reconfigure than
holistic approaches, because they permit designers to model and analyze
a system by composing several smaller, ideally pre-built system modules.
However, often the modularity is paid for by reduced analysis accuracy.

We would like to point out that the discussed requirements form a sort of ”wish
list” for attributes of performance analysis methods, i.e. they concern an ideal
method. As we will show in the following chapters, none of the approaches
considered satisfies all these requirements. In particular, different requirements
may be conflicting for some performance analysis methods. For instance, a
performance analysis method might be able to achieve more accurate results
when performing a more time-consuming analysis.

Moreover, depending on the application domain and the design approach,
the different requirements are usually not equally relevant.

Chapter 3

Approaches to performance analysis

There are several different approaches to analyzing or estimating the perfor-
mance of distributed embedded systems. In this chapter we describe a number
of methods for performance analysis that can be found in the literature. In
particular we focus on system level performance analysis in early design stages.

3.1 Classification

An important distinction is drawn between formal performance analysis meth-
ods and simulation based approaches. The former determine hard guarantees
of the performance of a system, while the latter cannot usually provide hard
performance bounds due to insufficient corner case coverage. There are also
stochastic methods for performance analysis which we will not consider in the
context of this thesis.

Further, one can distinguish modular and holistic performance analysis
methods. The modular approaches analyze the performance of single com-
ponents of the system and propagate the results in order to determine the
performance of the entire system. In contrast, the holistic approaches consider
the system as a whole. Holistic methods can generally provide more accurate
results, as the behavior of the entire system is analyzed at once. However, this
can also considerably increase the complexity of the analysis.

3.2 Simulation based methods

The use of simulation for performance verification of distributed embedded
systems is state of the art in industry. Several tools are available for cycle
accurate hardware-software co-simulation; see e.g. [7, 31, 24]. In addition,
the use of SystemC [19], a widespread platform for system-level modeling and
simulation, is very common. Many simulation methods are trace-based, i.e. the

10 Chapter 3

system designer provides traces of input stimuli that drive the simulation of the
modeled system.

The main advantage of simulation is the large modeling scope. In contrast
to formal analysis methods, basically every system can be modeled, as many
dynamic and complex interactions can be taken into account for the simulation.
Moreover, in most of the cases the functioning and performance of a system
can be verified with the same simulation environment, simulation traces and
benchmarks.

Another advantage of simulation based methods is that usually they are
reusable over different abstraction levels, as the simulation models can be re-
fined. In other words, the level of abstraction for the simulation can be adapted
to the required degree of accuracy.

However, hardware-software co-simulations are often computationally com-
plex and have long running times. Therefore, performance estimation quickly
becomes a bottleneck in the design process, especially if it is used to drive a
design space exploration.

The fundamental problem of simulation based performance analysis meth-
ods is the insufficient corner case coverage. Usually an exhaustive simulation of
all the system states is not feasible due to the enormous state space. Thus, in
order to determine the best-case or worst-case performance of a system through
simulation, the system designer must provide use cases in the form of simula-
tion traces that lead to the corresponding corner cases. However, this becomes
practically impossible with increasing system complexity.

The following example adapted from [10] shows that finding simulation
patterns that lead to corner cases is already challenging for apparently triv-
ial distributed embedded systems. The system architecture is represented in
Figure 3.1. In application A1 a task P1 of the CPU reads periodically data
bursts from the sensor and stores the data in the memory. A second task P2
reads the data from the memory, processes it and transfers it to an output
device via the shared bus. The task P2 has a best case execution time BCET
and a worst case execution time WCET. We suppose that the CPU implements
static fixed priority scheduling and that P1 has higher priority than P2. In
the second application A2 a task P4 running on the input interface periodically
sends data packets to the DSP over the shared bus. Task P5 on the DSP stores
the data packets into the buffer. A second task P6 periodically removes data
packets from the buffer, e.g. for playback. We suppose that the bus uses a first
come first serve scheme for arbitration. As the two data streams of A1 and A2
interfere on the shared bus, there will be a jitter in the packet stream received

Approaches to performance analysis 11

by the DSP that may lead to an underflow or overflow of the buffer.

Bus load

t
BCET WCET

Sensor CPU Memory I/O

Input DSP Buffer

A1

A2

Bus

…

P1,P2 P3

P5,P6P4

Figure 3.1: Interference of two data streams on a shared communication resource

The interesting property of this system is that the DSP experiences the
worst case input jitter when P2 executes continuously with its BCET. The
reason is that in this case the distance between the packets of A1 on the bus is
shortest and thus the transient bus load is highest. In other words, the worst
case execution of A2 coincides with the best case execution of A1.

The designer must perceive this system particularity in order to provide
a simulation trace that reaches the corner case. In case of larger and more
realistic systems, several computation and communication resources will be
shared simultaneously, there may be different scheduling policies for the various
resources and data/control dependencies will play a role. In short, the corner
cases will be extremely difficult to find.

Hence, simulation based methods are not suited to determining hard per-
formance bounds of a general distributed embedded system. Nevertheless, sim-
ulative approaches can be useful to estimate the average system performance.

Moreover, it can be advantageous to combine simulation with formal perfor-
mance analysis approaches: if the performance estimates provided by simulation
are close to the results determined by an analytical method, it means that the
calculated performance bound is accurate. In other words, simulation may be
helpful to evaluate the accuracy of formal performance analysis. However, note
that if the simulation and analysis results are distant, no conclusion about the
accuracy is possible: either a too pessimistic performance analysis or a too
optimistic performance simulation can be the cause.

12 Chapter 3

3.3 Holistic scheduling

There is a large body of literature on scheduling of tasks on shared computing
resources. In particular, in the real-time domain the research is focused on the
analysis of schedulability and worst case response times of tasks. Examples of
scheduling algorithms are fixed priority, rate monotonic, earliest deadline first,
round robin and TDMA. Detailed information about the various scheduling
policies and the corresponding analyses can be found in [5], as well as in many
other books on the topic.

Several proposals have been made to extend concepts of the classical schedul-
ing theory to distributed systems. In such systems the applications are executed
on several computing nodes and the delays caused by the shared use of commu-
nication resources cannot be neglected. In particular the integration of process
and communication scheduling is often denoted as holistic scheduling. Rather
than a specific performance analysis method, holistic scheduling is a group of
techniques for the analysis of distributed embedded systems.

Each analysis technique is focused on a particular input event model and
resource sharing policy. This permits a detailed analysis of the temporal behav-
ior of a system and leads to accurate performance predictions. Nevertheless,
the modeling scope of the analysis techniques is restricted to a particular class
of systems, i.e. the holistic approaches do not scale to general distributed ar-
chitectures. For every new kind of input event model, communication protocol,
resource sharing policy and combinations thereof, a new analysis method needs
to be developed.

A number of holistic analysis techniques can be found in the literature.
For instance in [27] Tindell and Clark combine fixed priority scheduling on
the processing resources of a distributed system with TDMA scheduling on
communication resources. In [22] Pop, Eles and Peng analyze mixed event
triggered and time triggered task sets that communicate over protocols with
both static and dynamic phases (e.g. FlexRay).

In this section we briefly describe the holistic analysis approach presented
by Tindell and Clark as well as improvements of the analysis for systems with
data dependencies (Yen, Wolf) and control dependencies (Pop, Eles, Peng).
Moreover, we describe the MAST tool (Gonzalez Harbour et al.), an analysis
suite that implements several holistic techniques.

Approaches to performance analysis 13

3.3.1 Schedulability analysis for distributed systems

In [27] Tindell and Clark propose an extension of the static priority preemp-
tive scheduling analysis to address the wider problem of scheduling analysis
for distributed systems. In particular, they derive an analysis for systems in
which tasks with arbitrary deadlines communicate via message passing over a
communication network implementing the TDMA protocol.

The starting point is the equation to compute the worst-case response time
of a given task i on a shared processor, assuming periodic task activations and
static priority preemptive scheduling [13, 11]:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri

Tj

⌉
Cj (3.1)

where ri is the worst-case response time of a given task i, hp(i) is the set of all
tasks of higher priority than task i, Ci ist the worst-case execution time of task
i and Tj is the period of task j. This equation is valid under the assumption
that the deadline of a task i is less than its period Ti and can be solved by
iteration (a suitable initial value for ri is 0).

Tindell and Clark contribute to two extensions of the above analysis:

1. They extend the analysis to the case with arbitrary deadlines

2. They take into account the release jitter Ji of processes, i.e. the worst-case
time between the arrival of a process and its release

The resulting analysis of the worst-case response time of a task i is given by
the following equations:

ri = max
q=0,1,2,...

(Ji + wi(q)− qTi) (3.2)

wi(q) = (q + 1)Ci +
∑

∀j∈hp(i)

⌈
Ji + wi(q)

Tj

⌉
Cj (3.3)

The sequence of values of q in the first equation is finite since only values of q

where wi(q) > (q + 1)Ti need to be considered.
The major achievement of Tindell and Clark is the adaptation of the above

processor schedulability analysis to a communication system. In particular,
they apply the same family of analysis to the bounding of message delays across
a TDMA broadcast bus. For the sake of conciseness, we do not report the
corresponding equations and refer the reader to [27].

Finally, Tindell and Clark integrate the analysis of the worst-case timing of
tasks with the analysis of the worst-case timing of messages. The basic concept

14 Chapter 3

is to interpret the message delay induced by the communication system as
release jitter of the receiver task. The result is a holistic analysis method for
distributed systems.

However, the holistic scheduling equations cannot usually be trivially solved
due to mutual dependencies. For instance the release jitter of a receiver task
depends on the arrival time of the corresponding message, which in turn depends
on the interference from higher priority messages, which in turn depends on the
release jitter of sender tasks.

This example points out an important property that holds for most of the
holistic analysis methods: in general the complexity of the model grows with
the size of the system.

3.3.2 Performance analysis for systems with data dependencies

In [32] Yen and Wolf introduce an analysis algorithm for the execution time of
an application on a distributed system. In particular they extend the classi-
cal analysis for static priority preemptive scheduling (equation 3.1) in order to
exploit data dependencies that exist among the tasks of a task graph. This per-
mits to determine tighter performance bounds. Basically, the extended analysis
takes into account that the delays through a path of tasks forming a task graph
are not independent.

The example of Figure 3.2 adopted from [32] illustrates the effects of data
dependencies on the execution delay1: if the data dependency between T2 and
T3 is ignored, their worst-case response times are 35ms and 45 ms, respectively.
Thus, the classical analysis assumes a worst-case delay of 80ms for the execution
of the task sequence T2-T3. However, the worst-case delay for this task sequence
is actually 45ms, because

1. T1 can only preempt either T2 or T3, but not both in a single execution

2. T2 cannot preempt T3

as can be easily traced considering the periods and WCETs of the system
specification.

To detect and exploit properties like the first one in the above example, Yen
and Wolf introduce the concept of phases among task activations and extend

1The example is considered also in Section 6.7 where a more detailed analysis can be found

Approaches to performance analysis 15

T1
 T2

T3

Task Period WCET Priority

T1 80 15 high
T2 50 20 medium
T3 50 10 low

Figure 3.2: Effect of data dependencies on the execution delay. The three tasks form
two task graphs and share the same CPU which implements preemptive fixed priority
scheduling.

the analysis of equation 3.1 as follows2:

ri = Ci +
∑

∀j∈hp(i)

⌈
ri − φij

Tj

⌉
Cj (3.4)

where the phase φij is the smallest interval for the next activation of a pre-
empting task j relative to the activation of a task i. In particular the phases
among the tasks are computed iteratively by a fixed point iteration: starting
with initial phase values the response time analysis is used to derive better
phase values which in turn allow a more accurate response time analysis etc.

To handle conditions like the second one in the above example, Yen and
Wolf introduce a so called separation analysis that allows to verify whether the
executions of two tasks can overlap or not.

For the sake of conciseness we do not report the two algorithms to compute
the phases and separations of tasks and refer the interested reader to [32].

3.3.3 Performance analysis for systems with control dependen-

cies

In [21] Pop, Eles and Peng present an extension of the previous analysis that
takes into account the control dependencies among the tasks of an application.
In systems with control dependencies, depending on conditions, only a subset of
the tasks is executed during a system invocation. As for data dependencies, the
consideration of control dependencies can significantly reduce the pessimism of
the performance analysis.

In particular, in [21] the authors introduce so-called conditional process
graphs (CPG) as models for applications and analyze their delay. Figure 3.3
shows an example of a system model consisting of two CPGs.

Three approaches are proposed to analyze the delay of a CPG:

2In [26] Tindell presents a similar concept of time offsets to exploit data dependencies

16 Chapter 3

T
0

T
1

T
2

T
4

T
3

T
5

T
6

T
7

T
8

C
 C

T
9

T
12

T
10
 T
11

Figure 3.3: Example of system model consisting of two CPGs. The execution of T2/T4
and T3 depends on the condition C determined by T1. The tasks are mapped on three
different processors as indicated by the shading.

Brute force solution

The CPG is decomposed into all its constituent unconditional subgraphs
and each of these subgraphs is analyzed as presented in the previous
section. This approach provides a tight bound on the delay, but can
be very expensive in terms of analysis effort, as in general the number
of unconditional subgraphs can grow exponentially with the number of
tasks.

Condition separation

The knowledge about the conditions is used only in order to refine the
separation analysis of the previous section. This analysis is more pes-
simistic than the brute force solution, however it reduces the analysis
effort significantly.

Relaxed tightness analysis

This approach is similar to the brute force solution, as the same number of
unconditional subgraphs must be analyzed. However, the analysis effort is
reduced significantly by the substitution of the original analysis algorithms
with less complex approximation variants. Of course, this simplification
is paid for by reduced analysis accuracy.

For the corresponding analysis algorithms we refer the reader to [21].

Approaches to performance analysis 17

3.3.4 The Modeling and Analysis Suite for Real-Time Applica-

tions (MAST)

An important contribution to enhance, implement and aggregate several
scheduling analysis techniques has been made by the research group of Gonza-
lez Harbour at the University of Cantabria. This group has realized the MAST
suite3[16], an open source set of software tools for the schedulability analysis of
real-time applications. It aggregates several scheduling analysis techniques for
mono-processor and distributed systems. In particular the MAST tool

• implements offset-based scheduling analysis techniques

• can model complex dependence patterns among the tasks of an application
(for instance multiple event task activation)

• supports hierarchical scheduling

• supports several input event models (for instance periodic, sporadic, or
bursty event streams)

• can compute optimal priority assignments to tasks

• can compute priority ceilings and preemption levels for shared resources

• can analyze the resource load and compute several slack values

For the evaluation of performance analysis methods conducted in the next
chapters we will use the MAST tool as representative of holistic performance
analysis methods.

3.4 Compositional scheduling analysis using stan-

dard event models

In [23, 10] Richter et al. propose a modular performance analysis approach
for distributed embedded systems based on the results of classical real-time
scheduling. The approach is denominated SymTA/S, which stands for Symbolic
Timing Analysis for Systems.4

3http://mast.unican.es/
4The SymTA/S approach is fully implemented in a software tool distributed under the

same name. In this thesis we will use the term SymTA/S for both the analysis approach itself
and the corresponding tool.

18 Chapter 3

In the following subsections we first report a number of well known abstrac-
tions for event arrival patterns on which the SymTA/S analysis is based. Then,
we briefly describe the analysis approach itself and some recent extensions.

3.4.1 Standard event models

The behavior of the environment of a distributed embedded system is often
modeled using common abstractions for event arrival patterns. These abstrac-
tions include periodic or sporadic event arrivals with potential jitters or bursts.
In the context of SymTA/S these models are denoted as standard event models.

Periodic event stream

In a periodic event stream with period P the events arrive at intervals of exactly
P time units. Figure 3.4 depicts a periodic arrival pattern.

P

t

t
1
 t
i
+1
t
2
 t
3

P

t
i

P

ti+1 − ti = P

Figure 3.4: Periodic event stream

Periodic event stream with jitter

In the periodic event stream model with jitter the events arrive at an average
time interval of P time units, but may have a local deviation around the ideal
periodic arrival. The deviation is bounded by an interval of length J ≤ P . This
is represented in Figure 3.5, where the intervals of admissible arrival times are
represented as shaded rectangles.

t

P
J

J ≤ P
ti = i · P + ϕi

0 ≤ ϕi ≤ J

Figure 3.5: Periodic event stream with jitter. In each jitter interval (shaded rectangle)
exactly one event arrives.

Approaches to performance analysis 19

Periodic event stream with burst

Events may arrive in bursts, if the deviation from the ideal periodic arrival time
is larger than the period. In this case the admissible arrival time intervals of
adjacent periods overlap, as depicted in Figure 3.6. However, events cannot
overtake each other: the arrival time of an event is restricted by the arrival
time of previous events. In particular an event may arrive only d time units
(d = minimum event inter-arrival time, d ≥ 0) after the arrival of the event
belonging to the previous period.

P

t

J

d
 J > P
ti = i · P + ϕi

0 ≤ ϕi ≤ J
ti+1 − ti ≥ d

Figure 3.6: Periodic event stream with burst

The standard event models also include the sporadic variants of the three
models described above. Basically they are identical to the periodic variants
with the difference that single event arrivals may be left out.

3.4.2 The SymTA/S analysis approach

The main goal of the SymTA/S analysis approach is to exploit the host of work
on mono-processor real-time scheduling analysis for the performance analysis
of distributed embedded systems. While holistic methods attempt to extend
classical scheduling analysis to special classes of distributed systems, SymTA/S
applies existing analysis techniques in a modular manner: the single modules of
a distributed system are analyzed with classical algorithms and the local results
are propagated among the system through appropriate interfaces.

The advantage of this approach is that it does not require the development
of new scheduling analysis algorithms. However, all the event streams in the
system must fit the basic models for which scheduling analysis techniques are
available. In particular, the output event stream of a component must be
converted to an event stream model that is compatible with the scheduling
analysis performed on the next component. SymTA/S provides interfaces to
convert standard event stream models among each other. These interfaces can
be grouped into two types:

Event Model Interfaces (EMIFs)

Event Model Interfaces do not change the actual timing properties of an

20 Chapter 3

event stream. Only the mathematical representation of the stream, i.e.
the underlying model is converted. Such transformations require that
the parameters of the target model encompass the timing of any possible
event sequence in the source model.

Event Adaptation Functions (EAFs)

Event Adaptation Functions need to be used in cases where an EMIF
transformation is not possible. In this case the timing properties of the
stream must be adapted to fit the requested model. In particular this
requires to change the implementation of the system, e.g. by adding
appropriate event buffers.

For instance it is possible to convert a periodic event stream with jitter X

to a sporadic event stream Y by a simple EMIF: If X is characterized by a
period PX and a jitter JX and Y is characterized by a minimum interarrival
time tY , the corresponding EMIF is represented by the equation tY = PX−JX .
However, this transformation comports a loss of information, as the stream Y

also comprehends event sequences that cannot occur according to the event
stream model X.

An example of an interface that requires an EAF is the conversion of a
periodic event stream with burst to a pure periodic event stream. In particular
it is necessary to add an appropriate buffer to smooth out the bursts.

Figure 3.7 gives an overview of the event model interfaces adopted by
SymTA/S.

sporadic

periodic
 periodic with burst
periodic with jitter

lossless

lossy

with
 adaption

Figure 3.7: Event model interfaces in SymTA/S

The event stream interface technology described above permits to analyze
the performance of a distributed embedded system by applying classical schedul-
ing analysis algorithms to local components. Figure 3.8 illustrates the overall
analysis principle. First the environmental timing assertions are applied to com-
ponents connected to the system inputs. Then, these components are analyzed
to derive local delays and buffer requirements, as well as the corresponding out-
put event models. These output event models are mapped to the input event

Approaches to performance analysis 21

models of the connected components using appropriate EMIFs or EAFs. In
pure feed-forward systems this procedure is simply repeated for all the com-
ponents until the event streams are propagated through the whole system and
global end-to-end delays and buffer sizes can be determined.

environmental model

local analysis

derive output event model

map to input event model

until convergence or non-
 schedulability

Figure 3.8: Analysis principle of SymTA/S

For systems with functional cycles (i.e. systems with feedback) or systems
with non-functional cyclic dependencies the timing of two or more components
is mutually dependent. In this case the event streams are propagated iteratively
until the event stream parameters converge or the tasks of a resource are no
longer schedulable.

3.4.3 Extensions

Several extensions have been worked out for the analysis approach described
above. For instance the SymTA/S analysis approach can deal with multiple
task activation. This means that the tasks of a system can be triggered by
multiple inputs in AND- or OR-combination. Moreover, the approach is able
to take into account system context information in order to reduce analysis
pessimism. In particular, the analysis methods support the exploitation of two
kinds of context information:

Intra-event stream context

This kind of context information considers the correlations between suc-
cessive computation or communication requests in an event stream. In
particular, the events of a stream can have different types and impose
different workloads on the activated tasks according to their type. Corre-
lations within a sequence of different activating events can be described by
means of appropriate intra-context information. This information can ei-

22 Chapter 3

ther describe exactly the sequence of activation events (e.g. by specifying
a periodically recurring pattern of event types) or be partially incomplete
(e.g. by specifying minimum and maximum number of occurrences for a
certain event type in an event sequence of a given length).

Inter-event stream context

This kind of context information considers timing correlations between
events in different event streams. In particular, while context-blind anal-
ysis assumes that all tasks sharing a resource are independent and can
all be activated simultaneously, this might not be possible due to timing
correlations among event streams. For instance, such correlations may
result from data dependencies (see Section 3.3.2) and can be expressed
by appropriate activation offsets.

More detailed information about the various extensions to the SymTA/S
performance analysis approach can be found in [10].

3.5 Modular Performance Analysis with Real Time

Calculus

Modular Performance Analysis with Real Time Calculus (MPA-RTC) [6] is a
framework for performance analysis of distributed embedded systems that has
its roots in network calculus [4], a theory of deterministic queuing systems
for communication networks. MPA-RTC analyzes the flow of event streams
through a network of computation and communication resources in order to
derive performance characteristics of a distributed embedded system.

MPA-RTC is a modular approach to performance analysis. It permits to
analyze large systems by composing basic analysis components to performance
models. In contrast to the SymTA/S approach, MPA-RTC is not restricted
to a few classes of input event models. In particular it permits to model any
event stream using so-called arrival curves. A similar abstraction, the so-called
service curves, is used to model the availability of computation or communica-
tion resources. Service curves are first-class citizen in the MPA-RTC approach
and permit to model basically any form of resource availability. This differen-
tiates MPA-RTC from other performance analysis methods, that are usually
restricted to a few common models of resource availability.

In the following subsections we first describe the concepts of arrival and
service curves (denoted together as variability characterization curves) on which
MPA-RTC is based. Subsequently, we describe the analysis approach itself and
some recent extensions.

Approaches to performance analysis 23

3.5.1 Variability characterization curves

In MPA-RTC the timing characterization of event and resource streams is based
on variability characterization curves which basically generalize the classical
representations such as sporadic, periodic or periodic with jitter.

Event streams are described using arrival curves ᾱu(∆), ᾱl(∆) ∈ R≥0,
∆ ∈ R≥0 which provide upper and lower bounds on the number of events in
any time interval of length ∆. In particular, if R[s, t) denotes the number of
events that arrive in the time interval [s, t) , then the following inequality is
satisfied:

ᾱl(t− s) ≤ R[s, t) ≤ ᾱu(t− s) ∀s < t (3.5)

where ᾱl(0) = ᾱu(0) = 0. The timing information of the standard event models
can easily be represented by appropriate pairs of upper and lower arrival curves
[6]. For instance Figure 3.9 depicts the upper and lower arrival curves of the
class of event streams with period P and jitter J .

#events

P

P

P

P

P-
J
 P+
J

2J

Figure 3.9: The upper and lower arrival curves of an event stream with period P and
jitter J

The arrival curves are much more general than the standard event models:
any deterministic event stream can be modeled by an appropriate pair of arrival
curves. The curves can be constructed analytically, if the event stream pattern
is completely defined. Alternatively they can be derived from a finite set of
event traces. This can be done easily by using a sliding window of size ∆ and
determining the minimum and maximum number of events within the window.

In a similar way, resource streams are described using service curves βu(∆),
βl(∆) ∈ R≥0, ∆ ∈ R≥0 which provide upper and lower bounds on the available
service in any time interval of length ∆. The service is expressed in an ap-
propriate unit, for instance number of cycles for computing resources or bytes
for communication resources. In particular, if C[s, t) denotes the number of

24 Chapter 3

processing or communication units available from the resource over the time
interval [s, t) , then the following inequality holds:

βl(t− s) ≤ C[s, t) ≤ βu(t− s) ∀s < t (3.6)

Again, there are no restrictions for the representable resource models. With
an appropriate pair of service curves, any deterministic resource availability
can be modeled. For instance Figure 3.10 depicts the upper and lower service
curves for a slot of a time units that permits the transmission of b bytes on a
TDMA resource with period Q. Moreover, service curves enable the modeling
of hierarchical scheduling.

bytes

Q
-a
 Q
+a
Q
 2Q
 3Q

b

Figure 3.10: The upper and lower service curves for a slot on a TDMA resource

Note that in the above definitions ᾱl(∆) and ᾱu(∆) are expressed in terms of
events (this is marked by a bar on the α), while βl(∆) and βu(∆) are expressed
in terms of workload/service units. However, the analysis described in the next
subsection requires the arrival and service curves to be expressed in the same
unit. The transformation of event-based curves into workload/resource-based
curves and vice versa is done by means of so called workload curves. Basically
these define the minimum and maximum workload imposed on a resource by a
given number of succeeding events, i.e. they capture the variability in execution
demands. The interested reader can find more information about workload
curves in [15].

3.5.2 Analysis and resource sharing

In this subsection we describe how MPA-RTC models the processing of event
streams by computation and communication resources. In particular we de-
scribe how the outgoing event and resource streams of a processing component
are derived from the ingoing event and resource streams.

Approaches to performance analysis 25

Figure 3.11 shows a so called Real Time Calculus abstract processing com-
ponent that models the processing of an event stream by an application process.
In particular, an incoming event stream represented as a pair of arrival curves
αl and αu, flows into a FIFO buffer in front of the processing component. The
component is triggered by these events and will process them in a greedy man-
ner while being restricted by the availability of resources, which are represented
by a pair of service curves βl and βu. On its output, the component generates
an outgoing stream of processed events, represented by a pair of arrival curves
αl′ and αu′ . Resources left over by the component are made available again on
the resource output and are represented by a pair of service curves βl′ and βu′ .

RTC

Figure 3.11: Real Time Calculus processing component

The transformation of input arrival and service curves to output arrival and
service curves is described by the following set of equations:

αl′(∆) = min { inf
0≤µ≤∆

{ sup
λ≥0

{αl(µ + λ)− βu(λ) } + βl(∆− µ) } , βl(∆) } (3.7)

αu′(∆) = min { sup
λ≥0

{ inf
0≤µ<λ+∆

{αu(µ) + βu(λ + ∆− µ) } − βl(λ) } , βu(∆) } (3.8)

βl′(∆) = sup
0≤λ≤∆

{min { inf
0≤µ≤∆

{ sup
λ≥0

− αu(λ) } (3.9)

βu′(∆) = max { inf
λ≥∆

{βu(λ)− αl(λ) } , 0 } (3.10)

The processing components can be freely combined to form performance
models of distributed embedded systems. For instance in order to model the
sequential processing of an event stream by two tasks, it is sufficient to connect
two processing components in series so that the outgoing event stream of the
first one is the ingoing event stream of the second one.

Scheduling policies on shared resources can be modeled by the way process-
ing components are linked and resource streams are distributed among them.
For instance Figure 3.12(a) shows how to connect two performance components
in order to model a resource that implements preemptive fixed priority schedul-
ing: the task TB has lower priority than TA and thus gets only the resource

26 Chapter 3

service that is left after TAhas been served. Figure 3.12(b) shows the modeling
of a proportional share policy. Many other scheduling strategies as for instance
FCFS, TDMA or EDF can be modeled by distributing resource streams prop-
erly.

T
A

T
B

T
A

T
B

share

sum

Figure 3.12: Real Time Calculus models for Fixed Priority and Proportional Share
scheduling

The performance analysis of a distributed embedded system is done by
combining the analysis of the single processing components of a performance
model. In particular, the maximum delay experienced by an event at a system
module and the maximum number of events that are waiting to be processed
can be bounded by the following inequalities:

delay ≤ sup
t≥0

{ inf { τ ≥ 0 : αu(t) ≤ βl(t + τ) } } (3.11)

backlog ≤ sup
t≥0

{αu(t)− βl(t) } (3.12)

The maximum delay and backlog experienced at a processing component cor-
respond to the maximal horizontal and vertical distance between αu and βl,
respectively, as depicted in Figure 3.13.

The end-to-end delay experienced by an event at the complete system is
computed as the sum of the single delays at the various processing components.
However, the analysis does not necessarily need to be strictly modular. For
instance a holistic delay analysis that considers the combined action of several
processing components in series is also feasible.

Approaches to performance analysis 27

max. backlog

max. delay

Figure 3.13: Graphical interpretation of maximum delay and backlog

3.5.3 Extensions

Several extensions have been worked out to refine the MPA-RTC analysis ap-
proach. The following list cites three examples:

• [28] proposes an abstract stream model for the characterization of streams
with different event types that impose different workloads on the system.
It permits considerable improvements of the worst-case performance anal-
ysis for systems with type related workload.

• [29] presents abstract models for system components, which permit to
capture complex functional properties of systems, as for example caches,
variable resource demands and arbitrary up- and down-sampling of event
streams in a system component.

• [30] introduces a model to characterize and capture the correlation of dif-
ferent resource demands that events of a given type cause on different
system components. The exploitation of such so-called workload correla-
tions can lead to considerably improved analysis results (see case study
in Section 6.6).

Finally, we would like to point out that the described modular performance
analysis framework is not necessarily bound to the use of Real Time Calculus.
Instead, any abstraction of event streams and resource characterization can
be used. It is sufficient to change the computations that are done within the
processing components appropriately.

28 Chapter 3

3.6 Timed automata based performance analysis

The use of formal methods for the design and analysis of real-time systems has
driven research for many years. Several different formal approaches can be used
to specify a system and verify its correctness. [8] gives an overview of available
formalisms for the design and analysis of real-time computing systems.

Timed automata [1] are one popular formalism for the specification of real-
time systems. They can be used in combination with a logic language to verify
system properties by model checking. In particular the UPPAAL tool envi-
ronment5 [3] allows users to validate and verify real-time systems modeled as
networks of timed automata.

In [17] Yi et al. have shown that the schedulability analysis of an event-
driven system can be represented as a reachability problem for timed automata
and thus can be tackled with model checking. In particular, timed automata
based schedulability analysis is implemented in the TIMES tool6 [2]. TIMES
permits users to analyze systems that are described as a set of tasks which are
triggered either periodically or by external event streams modeled through ap-
propriate timed automata. However, the TIMES tool is limited to the schedu-
lability analysis of single processors. Thus, it is not suited for performance
analysis of distributed systems.

Recently Hendriks and Verhoef have presented an approach to performance
analysis of distributed embedded systems based on the model checking of timed
automata networks [9]. In this section we briefly describe the fundamental
concept and the application of their approach.

Basically, the idea is to model the environment and the resources of a sys-
tem as timed automata. The various components are then composed into a
network of timed automata that models a distributed embedded system. The
performance properties of the system are verified through exhaustive model
checking. In particular, UPPAAL is used for the modeling and verification of
timed automata networks.

In the following subsections we describe some timed automata models for
input event streams and hardware resources that have been proposed so far in
the context of this analysis approach. Afterwards we show how the different
components can be aggregated to model a distributed embedded system and
how the performance analysis is realized. We would like to point out that
the analysis approach is not restricted to the component models described. In

5available at http://www.uppaal.com
6available at http://www.timestool.com

Approaches to performance analysis 29

particular, new timed automata models for other types of event streams and
resource sharing policies can be designed, making extensibility one of the major
benefits of this approach.

3.6.1 Modeling the environment

Several timed automata models have been proposed to represent different in-
put event streams. In particular, for all the standard event models (see Sec-
tion 3.4.1) corresponding timed automata templates have been designed. For
instance Figure 3.14 shows a timed automaton that models a periodic event
stream with period P . After an undefined initial offset the automaton gener-
ates events at intervals of exactly P time units. The generation of an event
is modeled by the increment of the global variable req. Figure 3.15 depicts a
timed automaton presented in [20] that models a periodic event stream with
jitter J ≤ P .

L1

x<=P

L0

x<=P

x>=P
req++, x:=0

req++, x:=0

Figure 3.14: Timed automata model for a periodic event stream

L1

x<=J

L2

x<=P

L0

x<=P
req++

x>=P
x:=0

x:=0

Figure 3.15: Timed automata model for a periodic event stream with jitter

The automaton for a periodic event stream with burst can be found in [9].
As we stated above, new event stream models can be designed easily. Basically
any deterministic event stream can be modeled.

3.6.2 Modeling the hardware resources

Each processing component is modeled as a separate timed automaton. A
processing component is either idle or busy computing some function. Similarly,
each communication link is modeled as a timed automaton. Each link is either
idle or transporting some data. For shared resources the adopted scheduling

30 Chapter 3

policy determines the structure of the model. For instance Figure 3.16 shows a
timed automaton that models a hardware resource with two tasks implementing
preemptive fixed priority scheduling. The resource can either be idle or process
T1 or process T2. The location pre T1 models the fact that T1 can preempt
T2. The hurry! synchronization models a so-called urgent edge (see [3] for
details) and makes sure that the corresponding edge is taken as soon as it is
enabled.

idleT2

x<=D

T1

x<=WCET_T1pre_T1 y<=WCET_T1

x==D
D:=0, req_T2--, x:=0

x<D
y:=0

req_T1>0
hurry!

req_T2>0 and req_T1==0

hurry!

x:=0, D:=WCET_T2

x==D
D:=0, req_T2--

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--y==WCET_T1

req_T1--,
D+=WCET_T1

Figure 3.16: Timed automata model for a preemptive FP resource with two tasks

Several other resource sharing strategies can be modeled with appropriate
timed automata. For instance in [20] we have presented a solution for a TDMA
policy.

3.6.3 Performance analysis

The timed automata models of the single system components are aggregated
into a timed automata network that represents a distributed embedded sys-
tem. The single components interact via global variables and channels. For
instance suppose that the timed automaton of an input event generator incre-
ments a global variable req to model the request of a task activation on a certain
resource. The timed automaton that models the corresponding resource is sen-
sitive to increments of the variable req and immediately starts the execution
of the corresponding task if no higher priority task has to be executed. The
completion of the task execution is modeled by the decrement of the variable
req. Let’s suppose that the corresponding output event triggers a second task.
This can be modeled by incrementing a second global variable req2 simultane-
ously with the decrement of req. Again, another automaton will be sensitive to

Approaches to performance analysis 31

the increments of req2, start the corresponding task and so on. In this way the
propagation of events through the distributed system can be easily modeled.

The performance attributes of a distributed embedded system are derived
by verifying properties of the corresponding timed automata network. For
instance, to ensure that the maximum backlog of a certain task does not exceed
a given value b, it is sufficient to verify the following property by model checking:

AG (req ≤ b)

where ’AG’ stands for ’always generally’ (= invariantly) and req is the global
variable that counts the activation requests of the corresponding task. In partic-
ular it is possible to derive the exact maximum backlog by finding the smallest
b that satisfies the above property. This can be done by using a binary search
strategy.

The verification of end-to-end delays is a little more involved as it requires to
adapt the timed automata models of the corresponding input event generators.
For instance Figure 3.17 shows the variant of a periodic event stream generator
that permits to verify end-to-end latencies.

L1
x<=P

seenL0

x<=P

x>=P
req++, n++, x:=0

x>=P && m==-1
req++, m:=n, n++,
x:=0, y:=0

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?

m:=-1, n--

req++, n++, x:=0

Figure 3.17: Timed automata model for a periodic input generator that measures the
end-to-end delay

The automaton is synchronized with the system output over the global
channel out and can keep track of the amount of time that passes between the
generation of an event and its output from the system. Basically, the automaton
can generate input events in the same way as the automaton of Figure 3.14
(left upper transition), but it can also arbitrarily choose to measure the end-
to-end delay of an event (right upper transition). In particular, the variable
n (initially 0) keeps track of the number of events that have been fed into the
system and for which no response (a synchronization over the channelout) has
been received yet. The clock y measures the response time and m (initially -1)

32 Chapter 3

equals the number of responses that must be discarded before the one used for
the measurement is seen. At most one measurement can be in progress and
m = −1 if no measurement is in progress. For more details we refer the reader
to [9].

Similar ’measuring’ automaton variants are available also for other event
streams. To ensure that the worst-case end-to-end delay of an event does not
exceed a given value d it is sufficient to verify the following property by model
checking:

AG (IG.seen ⇒ IG.y < d)

where we assume that ’IG’ is the name of the measuring automaton. Again, the
exact worst-case end-to-end delay can be determined by finding the smallest d

that satisfies the property.

The described method for performance analysis based on model checking has
an important benefit with respect to the approaches considered previously: it
permits to derive not only hard but also exact bounds for performance prop-
erties of a distributed system. However, the price to pay is a potential high
analysis effort due to the exhaustive model checking performed. In particular,
the modeling of a distributed embedded system as a network of timed automata
can easily lead to a state space explosion which makes the verification of system
properties infeasible.

3.7 Remarks

In this section we would like to point out a relevant difference in the interpreta-
tion of periodic task activation with jitter adopted by the various performance
analysis methods. In particular, the holistic methods interpret the jitter in the
activation of a task as release jitter, while all the other considered methods in-
terpret it as arrival jitter. In the former interpretation the arrival and release of
an event are distinguished: the events are assumed to arrive exactly at intervals
of one period but their release may be delayed up to the maximum jitter value
J. In the latter interpretation the maximum jitter value J defines an interval of
admissible arrival times.

Although in both cases the interval of admissible task activation times is
the same, this leads to a different analysis of the worst-case response time as
depicted in Figure 3.18: the holistic methods (a) consider the release jitter
already as part of the delay and refer the WCRT to the ideal periodic arrival
time of the event, while the other performance analysis methods (b) refer the

Approaches to performance analysis 33

J

WCRT

event

arrival

event release

(task activation)

task

completion

(a) interpretation adopted by the
holistic methods

J

WCRT

event arrival and release

(task activation)

task

completion

(b) interpretation adopted by the
other methods

Figure 3.18: Two different interpretations of activation jitter and WCRT

WCRT to the actual task activation time.
Usually it is not possible to convert the WCRT determined by a holistic

method to the second interpretation, as the actual task activation instant lead-
ing to the worst-case response is unknown. However, the two interpretations of
WCRT differ at most for the maximum jitter value J. Thus, the impact of this
interpretation difference on the performance analysis results depends on the
relative size of the WCRT in comparison with J: if the WCRT is much larger
than J, then the two different interpretations will not lead to significantly dif-
ferent results. However, if the actual worst-case delay from the task activation
to its completion is considerably smaller than J, then the holistic methods will
provide poor performance analysis results compared to methods that adopt the
second interpretation.

34 Chapter 3

Chapter 4

PESIMDES - An extendible performance

simulation library

PESIMDES (Performance Simulation of Distributed Embedded Systems) was
developed as part of this thesis and is an extendible open-source library for
performance simulation of distributed embedded systems based on SystemC.

In this chapter we briefly review the motivations for developing PESIMDES,
describe its features and explain the most important concepts of its implemen-
tation. A user guide to PESIMDES can be found in Appendix B.

4.1 Motivation

Whereas the use of formal approaches for performance analysis is still rare in
industry, simulation can be considered the current state of the art in MpSoC
performance verification. There are various commercial simulation environ-
ments for the simulation of distributed embedded systems. They differ from
each other mainly in the level of abstraction of the simulation models. The
range extends from cycle-accurate simulators for low-level models to discrete
event simulators for system-level models.

While there are many different (mostly proprietary) software tools for low-
level simulations, we have not found an adequate simulation tool focused on
performance estimation of distributed embedded systems on the system-level,
i.e. one which abstracts systems to an aggregation of event generators, process-
ing resources and tasks with BCET/WCET.

SystemC [19], a widespread platform for system-level modeling and simula-
tion, can be used to describe and simulate a distributed embedded system on
the requested level of abstraction. However, this requires a substantial set-up ef-
fort, as all the necessary components of the system model must be implemented
from scratch.

36 Chapter 4

Because on a high level of abstraction all distributed embedded systems are
composed of the same basic components, we have decided to collect these com-
ponents in a common repository in order to reduce the set-up effort required
for a SystemC performance simulation. The result is PESIMDES, a library
for performance estimations of distributed embedded systems build on top of
SystemC. PESIMDES is intended to be a pool of reusable modules which are
designed to facilitate the system-level modeling and simulation of large dis-
tributed embedded systems in early design stages.

4.2 Performance metrics and modeling scope

PESIMDES provides estimations for the two most important performance met-
rics of a distributed embedded system: latencies and memory requirements. On
the one hand the simulation allows to record the maximum observed end-to-
end delay for the processing of event streams. On the other hand the maximum
observed activation backlog of every single task can be monitored.

These results can be compared to the timing/memory requirements of the
system and possible deadline misses or buffer overflows may be detected. The
sequence of events leading to such a requirement violation can easily be traced
back as all generated input stimuli are stored into trace-files which can be used
to replicate the simulation.

Like any other simulation based approach, PESIMDES can only analyze
single input instances out of all possible system inputs. Thus the tool itself
cannot provide hard bounds for the worst-case performance of a system. It
is up to the designer to provide a set of appropriate simulation stimuli which
cover all relevant corner cases.

Table 4.1 summarizes the performance metrics supported by the current
PESIMDES version. Regarding the modeling scope, PESIMDES offers various
components to model the environment, the computation and communication
resources, the tasks and the buffers of a distributed embedded system. To
create a new system model, it is sufficient to select the proper components,
instantiate them and link them together. Table 4.2 gives an overview of the
current modeling power of PESIMDES. The modeling scope can easily be
extended by adding new components to the library.

Figure 4.1 gives an example of a simple distributed embedded system that

1By non-preemptive TDMA we mean that the execution of a task starts only if it can be
concluded within the remaining time of the corresponding TDMA-slot, i.e. if the task can be
executed without preemption.

PESIMDES - An extendible performance simulation library 37

Performance metric Supported

End-to-end delays (latencies) yes

Memory requirement (buffer dimensions) yes

Resource utilization not yet

Table 4.1: Performance metrics supported by the current PESIMDES version

Input Event Models periodic
periodic with jitter
periodic with burst
sporadic
sporadic with jitter
sporadic with burst
input from tracefile

Resource Models
&

Scheduling

FP resource (preemptive/non-preemptive)

EDF resource (preemptive/non-preemptive)

TDMA resource (preemptive/non-preemptive)1

Processing Components task with single activation
task with multiple activation (AND)
task with multiple activation (OR)

Table 4.2: Modeling scope of the current PESIMDES version

38 Chapter 4

can be simulated with PESIMDES. The corresponding PESIMDES model de-
scription is provided in Appendix B.

T4

T3

T1

T5

T2

CPU1

CPU2

CPU3

AND

initial tokens

I1

I2

O2

O1

E
nd

-t
o-

en
d

de
la

y
?

Bufferspace
 ?

Input streams I1: periodic with burst (P=20ms, J=55ms, d=2ms)
I2: periodic (P=10)

Resource sharing CPU1: FP preemptive
CPU2: EDF preemptive

Task WCETs T1: 2ms, T2: 1ms, T3: 7ms,
T4: 3ms, T5: 8ms

Scheduling param. priority T1: high, priority T2: low,
rel. deadline T3: 18ms, rel. deadline T4: 35ms

Figure 4.1: Example system

4.3 Implementation concepts

This section describes the key concepts behind the implementation of
PESIMDES. In particular we will briefly address the realization of event
propagation/buffering, input stream generation and resource sharing. The
source code of PESIMDES and more detailed documentation is available
online.2

All basic components of the PESIMDES library (event sources, event sinks,
tasks and resources) are implemented as SystemC modules. These modules are
linked among each other with channels which are necessary to propagate the
event streams in the system.

2http://www.mpa.ethz.ch

PESIMDES - An extendible performance simulation library 39

4.3.1 Event tokens and task activation buffers

The processing of an event stream in a distributed embedded system can be
represented as propagation of tokens among modules of the system. The tasks
in the system are triggered by incoming tokens (i.e. events) which are processed
for a certain amount of time and then forwarded to the next task in the task
graph. For performance analysis only the timing aspects of the system are
relevant and the actual functionality of the task does not matter. Thus, in
PESIMDES the processing of an event by a task is implemented by simply
delaying the corresponding token for the execution time of the task.

To permit performance estimation for event streams, tokens need to carry
some information with them while being propagated through the system. In
particular the data structure representing a token contains:

• a list of its generators with corresponding generation timestamps

• the timestamp of the last task activation request

• a list of tasks by which the token has been processed

The generation timestamp permits to keep track of the end-to-end delay
experienced by an event. This delay is simply calculated as the difference
between the arrival time at the event sink and the generation time at the event
source.

A token can have more than one generator because it may actually be
composed of several tokens. This occurs in the context of an AND-activated
task: several events (one on each input) are necessary to trigger the task. The
token produced at the output of the task must keep the generation information
of every input token and thus a list of generators is necessary.

The timestamp of the last task activation is necessary for the implementa-
tion of the EDF scheduling protocol. EDF scheduled tasks must meet a deadline
relative to their activation request. If the timestamp of the activation request
is stored, the observance of the corresponding deadline can be easily verified.

The recording of all the processing tasks of a token is necessary for the
detection of cycles in the path from the event source to the event sink. A token
finds out that it is following a cyclic path, if it reaches a task by which it has
already been processed.

Every task has an activation buffer where incoming activation requests are
queued up. This buffer is necessary because a new activation request may ar-
rive before the previous request has been processed. It is implemented as a

40 Chapter 4

FIFO-queue and thus preserves the order of activation requests. In particular,
for the implementation of the activation buffers in PESIMDES we use a slightly
extended version of the SystemC primitive channel SC FIFO: our channel be-
haves like SC FIFO but also keeps track of the maximum observed queue length
during the simulation of the system. This permits to calculate the maximum
backlog for every task and thus the memory requirement of the system.

4.3.2 Input stream generators

This subsection briefly describes the realization of the different input event gen-
erators for the periodic event models listed in Table 4.2. The implementations
of the sporadic event generators are not reported here for the sake of concise-
ness, but can be obtained from the corresponding periodic variants with minor
changes.

Periodic input

Figure 4.2 shows the desired behavior of a periodic event generator with period
P: the first event is generated somewhen in the interval [0,P] (initial phase f)
and the following events succeed at intervals of exactly P time units.

P

t

t
1
 t
i
+1
0
 t
2
 t
3

P

t
i

P
f
 ti+1 − ti = P
0 ≤ f ≤ P

Figure 4.2: Behavior of a periodic event stream generator

The implementation of the periodic event generator is straightforward - the
corresponding pseudo-code is reported in Listing 4.1.

periodic_input_generator (period) {

offset = random number in [0,period];

wait (offset);

while (true) {

generate event;

wait (period);

}

}

Listing 4.1: Pseudo-code of the periodic event generator

PESIMDES - An extendible performance simulation library 41

Periodic input with jitter

Figure 4.3 depicts the behavior of a periodic input generator with jitter (see
Section 3.4.1 for the description of the corresponding event stream model).

t

P
J
0

f

0 ≤ f ≤ P
J ≤ P
ti = f + i · P + ϕi

0 ≤ ϕi ≤ J

Figure 4.3: Behavior of a periodic event stream generator with jitter. In each jitter
interval (shaded rectangle) exactly one event is generated.

Listing 4.2 shows a simple implementation of the described behavior, where
in every period the event generation time is chosen at random among the ad-
missible values.

periodic_input_generator_with_jitter (period , jitter) {

offset = random number in [0,period];

wait (offset);

while (true) {

current_jitter = random number in [0,J];

wait (current_jitter);

generate event;

wait (period - current_jitter);

}

}

Listing 4.2: Pseudo-code of the simple periodic event generator with jitter

Periodic input with burst

The behavior of a periodic input generator with burst is shown in Figure 4.4.
The description of the corresponding event stream model can be found in Sec-
tion 3.4.1.

P

t

J

0

f

d
 0 ≤ f ≤ P
J > P
ti = f + i · P + ϕi

0 ≤ ϕi ≤ J
ti+1 − ti ≥ d

Figure 4.4: Behavior of a periodic event stream generator with burst

The concept behind the implementation of the event stream generator with

42 Chapter 4

burst is represented in Figure 4.5. The arrival time of an event belonging
to a preceding period can restrict the admissible arrival interval for the next
event. In particular, if an event ’disturbs’ the next period then the generation
probability for the next event is no longer distributed over the whole jitter
interval, but only over the remaining time (denoted as RT in the figure). We
call this implementation URT, which stands for ’Uniform over Remaining Time’.

RT

Figure 4.5: Restriction of admissible generation interval

The implementation of the described behavior is shown as pseudo-code in
Listing 4.3. It is a simple extension of the periodic input stream generator with
J ≤ P .

periodic_input_generator_with_burst_URT (period , jitter ,

min_inter_arr) {

offset = random number in [0,period];

wait (offset);

i = 0;

while (true) {

if (i-th period not yet started)

wait until start of i-th period;

RT = min (now - previous generation , J);

additional_wait = random number in [0,RT];

wait (additional_wait);

generate event;

wait (min_inter_arr);

i++;

}

}

Listing 4.3: Pseudo-code of the periodic event generator with burst (URT)

PESIMDES contains also a second implementation variant for the periodic
event stream generator with burst which we do not describe here for the sake of
conciseness. Basically, it distributes the generation probability of an event over
the whole jitter interval and defers events that would be generated ’too early’
(i.e. before the arrival of the previous event) to the first admissible generation
time. Compared to the first implementation described above, this variant leads
to a burstier event generation on average.

PESIMDES - An extendible performance simulation library 43

Increasing the corner case coverage

In many distributed embedded systems the worst-case performance occurs when
some events arrive as soon or as late as possible. However, the implementations
of the input generators for periodic event streams with jitter and periodic event
streams with burst presented above generate the events at random somewhen
in the admissible (remaining) jitter intervals. Thus it is very unlikely that an
event is generated exactly as soon or as late as possible and often this leads to
performance estimations that are far from the worst case.

For this reason we have included in PESIMDES an implementation of in-
put event streams with jitter/burst that allows users to easily configure the
frequency of earliest/latest possible event generations.

In particular we have implemented the simple stochastic finite state machine
depicted in Figure 4.6. This input generator can be in one of three states: it
either generates the events as soon as possible, as late as possible or at random
somewhen in the admissible interval. After each generated event the generator
may change state according to state change probabilities set by the user of
the module. We will show in chapter 6 that with proper values for the state
change probabilities this implementation can lead to much tighter worst-case
performance estimations for many distributed embedded systems.

R

S
 L

p
RL

p
LR

p
LS

p
SL

p
SR

p
RS

p
SS

p
RR

p
LL

R: generate events at random in admissible interval
S: generate events as soon as possible
L: generate events as late as possible
pxy = probability of state change from x to y

Figure 4.6: The stochastic FSM at the bottom of the event generator

4.3.3 Resource sharing

This subsection describes briefly how the sharing of computation and communi-
cation resources among several tasks is simulated in PESIMDES. In particular
the key concepts behind the implementation of the scheduling algorithms listed
in Table 4.2 are addressed.

All the implementations are parameterized by the number of tasks which
share a resource. Thus, in PESIMDES an arbitrary number of tasks can be
assigned to each shared resource.

44 Chapter 4

For conciseness we describe only the preemptive variants of the different
scheduling algorithms. The non-preemptive algorithms are obtained directly
from the corresponding preemptive ones with minor changes.

Static Fixed Priority scheduling (FP)

To simulate a shared resource implementing FP scheduling for n tasks, n+1
parallel running threads are generated: one thread for every task plus an addi-
tional scheduler thread. These threads interact via SystemC events. Listing 4.4
summarizes the behavior of the task threads and the scheduler thread as pseudo-
code. Upon receiving of an activation request a task interrupts the currently
running task and notifies the scheduler. The scheduler assigns the resource to
the task with the highest priority among all the tasks that require it. When
a task completes its execution, it again produces an interrupt to notify the
scheduler that the resource can be assigned to some other task.

scheduler () {

while (true) {

wait for interrupt;

assign resource to the busy task with the highest priority;

}

}

task () {

while (true) {

wait for activation request;

notify interrupt;

while (execution is not terminated) {

wait for resource;

process request until execution is terminated or interrupted;

if (execution is terminated)

notify interrupt;

}

}

}

Listing 4.4: Pseudo-code of the FP implementation

Earliest Deadline First scheduling (EDF)

The realization of the EDF scheduling algorithm is similar to the FP implemen-
tation and is reported as pseudo-code in Listing 4.5. Again, the tasks interrupt
the current execution and notify the scheduler upon receiving an activation re-
quest. However, in this case the scheduler must be aware of the task’s deadlines

PESIMDES - An extendible performance simulation library 45

and assigns the resource to the most urgent task, i.e. the task with the closest
deadline.

scheduler () {

while (true) {

wait for interrupt;

assign resource to the most urgent task;

}

}

task () {

while (true) {

wait for activation request;

notify interrupt;

while (execution is not terminated) {

wait for resource;

process request until execution is terminated or interrupted;

if (execution is terminated)

notify interrupt;

}

}

}

Listing 4.5: Pseudo-code of the EDF implementation

Time Division Multiple Access scheduling (TDMA)

With the TDMA scheduling policy the tasks dispose of the resource in time
slots that are are periodically repeated. These slots are assigned to the tasks
for exclusive resource utilization. For simplicity we assume that at most one
task is assigned to every TDMA-slot.

Listing 4.6 describes the behavior of the task threads and the scheduler
thread as pseudo-code. The scheduler does simply clock the single TDMA-
slots. At every slot change it interrupts the current execution and assigns a
new value to the turn variable. The tasks wait for their turn to use the resource
and occupy it until the execution is terminated or interrupted by a slot change.
Unused slot parts are not left to other tasks and cause the resource to be idle.

46 Chapter 4

scheduler () {

while (true) {

for (i = 0; i < slot_no; i++) {

turn = i;

notify interrupt;

wait (length of slot i);

}

}

}

task () {

while (true) {

wait for activation request;

while (execution is not terminated) {

if (turn == myturn)

process request until execution is terminated or interrupted;

else

wait for interrupt;

}

}

}

Listing 4.6: Pseudo-code of the TDMA implementation

4.4 Future extensions

Currently PESIMDES is a library of SystemC components and the user is re-
quired to write a SystemC main routine that instantiates and connects appro-
priate modules from the PESIMDES library in order to simulate the system. In
the near future we plan to implement a PESIMDES stand-alone tool that can
be used without any knowledge of SystemC. In particular, the tool will take as
input the specification of a distributed embedded system according to the XML-
format described in Appendix A, enriched with an appropriate PESIMDES tag
for the configuration of simulation parameters. Therefore, in order to run a
simulation, the user will only be required to pass a file containing the XML
description of the system to the PESIMDES executable.

Other future work will deal with the extension of the modeling scope of
PESIMDES. In the following we give two examples of extensions that we plan
to implement in near future.

PESIMDES - An extendible performance simulation library 47

Arrival curves

Arrival curves are a much more general model to describe event streams than
classical representations such as sporadic or periodic event models (see Sec-
tion 3.5.1 for details).

We plan to develop a component for the PESIMDES library that generates
an input stream according to a given pair of arrival curves (upper and lower
arrival curve). In particular we plan to employ the algorithm presented by
Künzli et al. in [12] to generate event traces from arrival curves.

Hierarchical scheduling

In several distributed embedded systems computing or communication resources
are shared among tasks using scheduling strategies in a hierarchical manner. We
plan to add the support for hierarchical scheduling in PESIMDES by introduc-
ing so called pseudo-tasks. These are tasks that are scheduled on a resource
like common tasks but act themselves as schedulers towards other tasks by
forwarding the assigned resource share.

48 Chapter 4

Chapter 5

Comparison of performance analysis

methods

The need for reliable and accurate performance analysis in early design stages
has driven research for many years. The increasing relevance of tight perfor-
mance prediction is reflected in a growing literature about approaches to per-
formance analysis. However, the various approaches are very heterogenous in
terms of modeling scope, modeling effort, tool support, accuracy and scalability
and there is a lack of literature on their classification and comparison.

In this chapter we first address several criteria that we regard as relevant
for the classification and comparison of performance analysis approaches (Sec-
tion 5.1). We then classify, compare and evaluate the performance analysis
methods described in chapter 3 with respect to several of these criteria (Sec-
tions 5.2 and 5.3).

5.1 Comparison criteria

In the following we discuss possible comparison and classification criteria for
performance analysis methods. Most of them are not directly quantifiable, but
play an important role in the distinction of performance analysis approaches.

Performance metrics

A first classification criterion for performance analysis methods is given by the
set of analyzable performance metrics (see section 2.2). In particular, a perfor-
mance analysis approach may support the analysis of system characteristics like
timing aspects, memory requirement, resource utilization or power consump-
tion. The analysis of timing aspects includes the determination of best-case
and worst-case latencies and end-to-end delays. The analysis of the memory
requirement is often related to the determination of worst-case buffer fill levels.

50 Chapter 5

Modeling scope

A fundamental comparison criterion for performance analysis methods is the
modeling scope. By the modeling scope of a certain approach we mean the set
of distributed embedded systems that can be represented and analyzed using
the modeling power of the method. For instance the capability to model sev-
eral particular system characteristics, such as hierarchical scheduling, blocking
times, multiple task activation etc., differentiates the modeling scopes of the
various performance analysis methods.

Correctness and accuracy

A worst-case analysis is said to be correct if the result is a hard upper bound
for the real worst-case performance of the considered system. In other words,
there are no reachable system states which would allow the calculated bound
to be violated.

The accuracy of a performance analysis is usually not quantifiable because
the exact worst-case performance of the considered system is unknown. How-
ever, a performance analysis method is more accurate than another for a certain
system if it provides a tighter upper (lower) bound for the worst-case (best-case)
performance.

Modularity

Performance analysis methods can be classified into modular and holistic ap-
proaches (see Chapter 3). The modular approaches analyze the performance of
single components of the system and propagate the results in order to deter-
mine the performance of the entire system. In contrast, the holistic approaches
consider the system as a whole. Modular performance analysis methods are
typically less complex and easier to reuse than holistic ones.

Modeling effort and tool support

An important criterion for the comparison of performance analysis methods is
the effort that it costs the designer to create system models. The modeling
effort can be largely alleviated by appropriate software tools.

Analysis effort

This criterion considers the computational effort that is necessary to obtain
performance analysis results. For instance one could compare the running times
of the tools that implement the different performance analysis approaches.

Comparison of performance analysis methods 51

Scalability

A relevant comparison criterion for performance analysis approaches is scala-
bility. In particular, this point is pertinent to several of the previous criteria:
the modeling and analysis efforts as well as the accuracy of the results may be
greatly influenced by the dimension of the analyzed system.

End-user complexity and learning curve

Other aspects that can be considered for the comparison of performance analysis
approaches are the complexity experienced by the end-user that applies a certain
method or tool, as well as the progression of its learning curve. In particular,
these points are largely influenced by the amount of background knowledge that
a user must acquire about a certain performance analysis approach in order to
be able to apply it.

5.2 Comparison of modeling scope and performance

metrics

In this section we compare the performance analysis methods described in Chap-
ter 3 with respect to their modeling scope and the analyzable performance
metrics.

The multitude of heterogeneities among the performance analysis ap-
proaches and the different levels of abstraction in the modeling of particular
system attributes make this task very complex. We therefore restrict the com-
parison of the various modeling scopes to a number of key attributes and show
the result in the form of an overview in Table 5.2.

In particular, we base the comparison on the modeling capabilities of con-
crete implementations of the various performance analysis approaches. More-
over, we would like to point out that a ’no’ in a cell of the table does not mean
that the modeling of the corresponding system characteristic is conceptually
impossible for the corresponding performance analysis approach. Rather, it
denotes that no significant research has so far been conducted to integrate this
particular aspect.

The performance metrics which are analyzable by the different approaches are
listed in Table 5.1.

52 Chapter 5

Real Time
Calculus

SymTA/S

Holistic
scheduling

(MAST-tool)

Timed
automata

based analysis

End-to-end
delays

yes yes yes yes

Buffer
spaces

yes yes no yes

Resource
utilization

yes yes yes no

Table 5.1: Analyzable performance metrics

5.3 Comparison of usability

In this section we compare the performance analysis approaches described in
Chapter 3 with respect to their usability. In particular we comment briefly on
the modeling effort, tool support, end-user complexity and learning curve for
each of the methods.

Real Time Calculus

The modular performance analysis approach based on real time calculus has
been implemented in form of a MATLAB toolbox.6 Basically, the toolbox of-
fers performance modules that the user can combine to produce performance
networks (see Section 3.5). These performance modules implement the equa-
tions that describe the processing of event and resource streams through tasks,
i.e. they abstract the user from the actual Real Time Calculus.

Nevertheless, the user must be familiar with the concepts of arrival and
service curves. Moreover, he must learn how to connect the performance mod-
ules properly in order to model given scheduling strategies for shared resources.
However, once this knowledge is acquired, it is quite straight forward to apply
this performance analysis method.

1only schedulability test
2only for mono-processor systems
3see case study in section 6.4
4see case study in section 6.5
5see case study in section 6.6
6available at http://www.mpa.ethz.ch

Comparison of performance analysis methods 53

Real Time
Calculus

SymTA/S

Holistic
scheduling

(MAST-tool)

Timed
automata

based analysis

Input event
model

any
(arrival curves)

periodic
periodic+jitter
periodic+burst

sporadic
sporadic+jitter
sporadic+burst

periodic
sporadic
singular
bursty

unbounded

periodic
periodic+jitter [20]

periodic+burst
sporadic

sporadic+jitter
sporadic+burst

Resource
model

any
(service curves)

Full service with
speed factor

Full service with
speed factor

Full service

Scheduling FP
TDMA
GPS
RM

Round robin
EDF1

FP
TDMA

RM
EDF

Round robin
Ercosek
CAN

FP
EDF2

FP
TDMA [20]

Hierarchical
scheduling

yes no yes no

Shared
resources
(mutually

exclusive)

no, but can
consider blocking

time

no, but can
consider blocking

time

yes no

Workload
model

any
(workload
curves)

BCET/WCET
interval

(variable according
to context)

BCET/WCET
interval

BCET/WCET
interval

Task
activation

single activation
mult. activation

(AND/OR)

single activation
mult. activation

(AND/OR)

single activation
mult. activation

(AND/OR)

single activation
mult. activation

(AND/OR)3

Intra-event
contexts

yes yes no yes4

Workload
correlations

yes no no yes5

Table 5.2: Comparison of modeling scope

54 Chapter 5

To analyze a distributed embedded system with the RTC Toolbox, the user
is required to write a MATLAB program that invokes appropriate commands
for the creation and analysis of performance networks. For large systems this
may result in a considerable modeling effort. However, a prototype of a graph-
ical user interface for the creation of performance networks has recently been
developed. The modeling effort can be drastically reduced by using such a tool.

SymTA/S

Among the evaluated performance analysis methods, the Compositional
Scheduling Analysis based on Standard Event Models is by far the easiest
approach for the end user to apply. This because it is fully implemented in
SymTA/S, a powerful and user-friendly software tool.7. Figure 5.1 shows a
screenshot of the tool in action.

Figure 5.1: SymTA/S screenshot

The intuitive graphical user interface reduces the modeling effort to a min-
imum and permits the user to model large distributed embedded systems. The
tool abstracts completely from the underlying analysis theory and only basic
knowledge of embedded systems is necessary for its use.

7developed and distributed by Symtavision GmbH (http://www.symtavision.com)

Comparison of performance analysis methods 55

Holistic scheduling

As described in Section 3.3 several different holistic performance analysis ap-
proaches can be found in the literature. However, there is no tool support for
most of them . The consequence is poor scalability in terms of modeling effort.
Moreover, the complexity of the analysis theories based on holistic scheduling
entails a very steep learning curve for non-specialists.

There is, however, one software tool that implements holistic performance
analysis, the so called Modeling and Analysis Suite for Real-Time Applications
(MAST)8[16]. Rather than the implementation of a single performance analysis
method, MAST is an open source set of tools for timing analysis of real-time
applications.

In order to analyze a distributed embedded system with MAST it is nec-
essary to feed the tool with a model specified in a predefined textual format.
Currently, there is no automatic support for the modeling process. Thus, the
user faces a considerable modeling effort for large systems. Moreover, the ad-
vantage that MAST can consider several details of a system in order to analyze
it (for instance resource overheads, mutual exclusions, synchronizations) is paid
for by a rather complex input format.

Timed automata based analysis

The performance analysis approach described in Section 3.6 uses the Uppaal
tool as support for the design and verification of timed automata networks.
However, the construction of the timed automata that represent a distributed
embedded system is still done manually, which requires a huge modeling effort.
The use of predefined modeling templates may help9, but the major issue is
scalability: with growing system dimensions the modeling effort may increase
dramatically. For instance, the timed automaton that is necessary to model
a preemptive FP resource with 3 tasks is already considerably larger than the
corresponding automaton for 2 tasks, as shown in Figures 5.2 and 5.3.

Nevertheless, as for other performance analysis methods, the modeling pro-
cess can potentially be automated.

In principle, basic knowledge of timed automata is sufficient to apply this
performance analysis method. However, exhaustive model checking may easily
lead to a state space explosion and in such cases advanced knowledge about
Uppaal and state space reduction may be helpful.

8available at http://mast.unican.es/
9see [9] and [20]

56 Chapter 5

idleT2

x<=D

T1

x<=WCET_T1pre_T1 y<=WCET_T1

x==D

D:=0, req_T2--, x:=0
x<D
y:=0

req_T1>0
hurry!

req_T2>0 and req_T1==0

hurry!

x:=0, D:=WCET_T2

x==D
out!

D:=0,
req_T2--

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--y==WCET_T1

req_T1--,
D+=WCET_T1

Figure 5.2: Timed automata model for a preemptive FP resource with 2 tasks

pre_T1T2T3

z<=WCET_T1

pre_T2T3

y<=D pre_T1T3

y<=WCET_T1

T3
x<=V

idleT2

x<=D

T1

x<=WCET_T1
pre_T1T2

y<=WCET_T1

z==WCET_T1
req_T1--,
D+=WCET_T1

y==D
D:=0, req_T2--, y:=0, V+=D

y<D
z:=0

req_T1>0
hurry!

y==D
req_T2--,
V+=D, D:=0

x<V
y:=0

x==V

V:=0, req_T3--,
x:=0

req_T2>0 and
req_T1==0

hurry!
D:=WCET_T2

y==WCET_T1
req_T1--, V+=WCET_T1

x<V

y:=0

x==V

V:=0, req_T3--, x:=0

req_T1>0
hurry!

x==V
V:=0, req_T3--

req_T3>0 and
req_T2==0 and
req_T1==0hurry!

x:=0, V:=WCET_T3

x==D
D:=0, req_T2--, x:=0

x<D
y:=0

req_T1>0
hurry!

req_T2>0 and req_T1==0

hurry!

x:=0, D:=WCET_T2

x==D
D:=0,
req_T2--

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--

y==WCET_T1
req_T1--,
D+=WCET_T1

Figure 5.3: Timed automata model for a preemptive FP resource with 3 tasks

Chapter 6

Case studies - Comparison in numbers

In this chapter we present a number of performance analysis case studies. In
particular, we apply the performance analysis methods considered in Chapter 3
to some simple distributed embedded systems and compare the results obtained.

The comparison is mainly focused on the accuracy of the different perfor-
mance analyses, but modeling effort and running times of the tools are also
considered in some cases.

Most of the analyzed systems derive from a pool of performance analysis
problems defined at the ARTIST21 Workshop on Distributed Embedded Sys-
tems 2005.2 At this workshop the originators of several performance analysis
approaches met to define a set of benchmark problems for performance analy-
sis of distributed embedded systems3. The authors of most of the approaches
considered in this thesis were present at this workshop, in particular there were
representatives for:

• Real Time Calculus (Swiss Federal Institute of Technology ETH Zurich, Switzerland)

• SymTA/S (TU Braunschweig & Symtavision GmbH, Germany)

• Holistic scheduling (Linkoping University, Sweden)

• Timed automata based analysis (Radboud University Nijmegen & Chess Information

Technology B.V., The Netherlands)

• Uppaal (University of Uppsala, Sweden)

1ARTIST2 Network of Excellence on Embedded Systems Design (http://www.artist-
embedded.org/FP6/)

2held at the Lorentz Center in Leiden, The Netherlands. Official website of the workshop:
http://www.lorentzcenter.nl/lc/web/2005/20051121/info.php3?wsid=177

3available at http://www.tik.ee.ethz.ch/∼leiden05/

58 Chapter 6

The authors of the MAST tool were not present at the workshop; however the
research conducted by the group from Linkoping University is tightly coupled
to the MAST approach.

At the workshop two kinds of benchmark problems were defined. A first set
of benchmarks forms the so called pool of ’small’ performance analysis problems.
These are basic distributed systems that are focused on a particular analysis
problem. The systems are intentionally kept as small as possible (involving
only a few tasks and resources) in order to isolate a single analysis difficulty
and expose the analysis behavior of the different methods with respect to that
particular system characteristic. A second set of benchmarks forms the so called
pool of ’large’ performance analysis problems. These systems were defined to
examine the scalability of the various performance analysis methods.

In this chapter we pick up some of the ’small’ problems defined at the
ARTIST2 workshop and analyze them with the performance analysis meth-
ods described in Chapter 3. Moreover, we also simulate the systems with
PESIMDES, the SystemC simulation library presented in Chapter 4. The inten-
tion is to compare the upper and lower bounds for the worst-case performance
provided respectively by formal analysis methods and simulation.

We do not consider system specifications out of the pool of large performance
analysis problems because most of them are restricted to one single analysis
method which impedes a direct comparison with other approaches.

For every considered case study we

• describe briefly the system composition and its particularities

• specify the performance characteristics to determine

• discuss potential modeling difficulties of single performance analysis meth-
ods

• compare the performance bounds provided by the different methods

• interpret the obtained results

In order to produce meaningful comparisons we do not restrict the analysis
problems to a single system configuration but repeat the performance analysis
for changing values of a relevant parameter in the system. For instance we
vary the values of input jitters or worst case execution times in order to figure
out the influence of these parameters on the analysis results and to individuate
trends.

Case studies - Comparison in numbers 59

All the models constructed and used with the various tools to analyze the
worst-case performance of the systems described in this chapter are included in
Appendix C.

6.1 Case study 1: Pay burst only once

The intention of this case study is to compare the different performance analysis
approaches with respect to the sequential processing of a periodic input stream
with jitter/burst on independent resources.

This case study is denoted as problem No. 9 in the pool of small perfor-
mance analysis benchmarks defined at the ARTIST2 Workshop on Distributed
Embedded Systems 2005 [18].

Specification

Figure 6.1 depicts the topology of the system. An event stream with burst is
processed by a row of three tasks running on independent CPUs. The perfor-
mance characteristics to determine are the worst-case end-to-end delay from I1
to O1 and the maximum backlog of task T3.

T3

CPU3

I1
 T1

CPU1

T2

CPU2

O1

Input stream I1 periodic with burst (P=10ms, J=50ms, d=1ms)

Task WCETs T1: 1ms, T2: 4ms, T3: 8ms

Figure 6.1: Specification of the case study ’Pay burst only once’

The name ’Pay burst only once’ denotes an important property of the sys-
tem: the WCETs of the tasks are in increasing order and therefore a potential
burst at the input I1 is gradually smoothed out while being processed by the
system. A consequence of this fact is that no event experiences the worst-case
response time on all three processors: an event that has ’paid’ a heavy burst
on one processor will not experience the worst-case response time on another
processor. In other words, the worst-case end-to-end delay of the system is
smaller than the sum of the worst-case response times of the three CPUs.

This effect becomes more apparent with increasing jitter values. In order
to analyze its impact on the performance bounds calculated by the various

60 Chapter 6

methods we repeat the performance analysis for jitter values of the input event
stream from J = 0 ms (no jitter) to J = 70 ms (burst).

Modeling

The modeling of the system with the various performance analysis tools is
straightforward. The corresponding models can be found in the Appendix Sec-
tion C.1. There is, however, one point to consider: the MAST tool cannot model
bursty event streams with a minimum inter-arrival time. Thus, for the MAST
analysis we use the following parameters for I1: P = 10 ms, J = 50ms, d =
0ms. This will still produce a valid upper bound for the end-to-end delay
of the original system, but comports an overapproximation and thus a loss of
accuracy.

Regarding the PESIMDES simulation, we model and simulate the system
twice using two different library components for the periodic event stream gen-
erator with burst. First we use the ’random’ burst generator and then we try
to improve the corner case coverage by using the burst generator with con-
figurable frequency of earliest/latest possible event generations. The behavior
of both components is explained in detail in Section 4.3.2. In particular the
state change probabilities used for the stochastic FSM shown in Figure 4.6 are
pRS = pSR = pRL = pLR = pSL = pLS = 0.05, pRR = pSS = pLL = 0.9. We
call this model PESIMDES ’90-5-5’ for short.

Results and Discussion

Figure 6.2 shows the worst-case end-to-end delay provided by the different tools.
The values derived with Uppaal are verified through model checking and repre-
sent the exact worst-case end-to-end latencies of the system. As can be seen in
the chart, the MPA-RTC bound corresponds to the exact worst-case latencies
of the system. This shows that MPA-RTC is able to cope with the particular
system property described above. For SymTA/S this is not the case: the analy-
sis becomes worse for increasing jitter values. The pessimism of the MAST tool
has two causes: first the overapproximation due to the different input event
stream with d = 0 and second the fact that MAST considers input jitters as
delays (this issue is explained in detail in Section 3.7).

Regarding the PESIMDES simulations, the chart shows that the estima-
tions provided by the random burst implementation do not cover the worst
case in general and become worse (too optimistic) with increasing jitter values,
this despite the simulation of 10000 consequent input events per estimation.
In contrast, the PESIMDES 90-5-5 simulation (based on the stochastic FSM)

Case studies - Comparison in numbers 61

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

jitter I1 [ms]

en
d
-t

o
-e

n
d
 d

el
ay

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES random

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.2: Worst-case end-to-end delay

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

jitter I1 [ms]

b
ac

k
lo

g
 T

3

MPA-RTC

SymTA/S

PESIMDES random

PESIMDES 90-5-5

Uppaal

Figure 6.3: Worst-case backlog for T3

62 Chapter 6

covers the corner cases which lead to the worst-case performance of the system
and thus provides accurate performance estimations.

The execution times of the various analysis/simulation runs are negligible
on a standard PC (< 1s) except for the Uppaal model checker: the verification
time grows considerably with increasing jitter, from < 1s for J = 0 ms to 100s
for J = 70ms (for a single step of binary search).

The estimated maximum backlog values are depicted in Figure 6.3. As
for the end-to-end delays, Uppaal, MPA-RTC and PESIMDES 90-5-5 provide
the exact worst-case backlogs, while the results of SymTA/S and PESIMDES
become worse with increasing jitter values. As indicated in the last chapter,
the MAST tool does not support the estimation of backlogs.

6.2 Case study 2: Cyclic dependencies

The purpose of this case study is to examine the capability of the different per-
formance analysis methods to deal with feedback loops and cyclic dependencies.

This case study is denoted as problem No. 10 in the pool of small perfor-
mance analysis benchmarks defined at the ARTIST2 Workshop on Distributed
Embedded Systems 2005 [18]. Differently from the original problem specifica-
tion we omit the minimum interarrival time for the input event stream in order
to avoid the penalization of the MAST tool that cannot take into consideration
this parameter (see previous case study).

Specification

Figure 6.4 represents the system to be analyzed. An event stream with burst is
processed by a sequence of three tasks running on two independent resources.
On CPU1, a fixed-priority scheduler is used to schedule T1 and T3. The perfor-
mance characteristic to be determined is the worst-case end-to-end delay from
I1 to O1.

We consider two scenarios for this system. In scenario 1, T1 has higher
priority than T3. In this case correlation effects may occur. For instance,
depending on the input stream properties it may happen that T1 is never
running when T3 has to run and that therefore T3 is never preempted by T1.

In scenario 2, T3 has higher priority than T1. In this case the same cor-
relation effects as in scenario 1 may occur, but additionally, there is a cyclic
dependency in the system.

In order to examine the influence of the input jitter on the behavior of the
system, we repeat the performance analysis for jitter values from J = 0 ms to

Case studies - Comparison in numbers 63

I1
 T1

CPU1

T2

CPU2

O1
 T3

Input stream I1 periodic with burst (P=10ms, J=50ms, d=0ms)

Resource sharing CPU1: FP preemptive

Task WCETs T1: 1ms, T2: 4ms, T3: 4ms

Scheduling param. 1) priority T1: high, priority T2: low
2) priority T1: low, priority T2: high

Figure 6.4: Specification of the case study ’Cyclic dependencies’

J = 50ms.

Modeling

The two scenarios can be modeled with all the considered performance analysis
tools. The corresponding models are enclosed in Appendix Section C.2. How-
ever, the modeling of the second scenario requires particular attention. The
reason is the cyclic dependency on CPU1: the output behavior of T1 depends
on the CPU availability left over after the activity of T3 while at the same time
the activity of T3 depends on the output behavior of T1. This dependency can
be handled through a fixed-point calculation. However, while in some tools (for
instance in SymTA/S) the fixed-point calculation is handled automatically and
the user does not need to worry about it, in others (for instance in MPA/RTC)
it must be implemented explicitly.

Results and Discussion

The worst-case end-to-end delays determined by the different methods for sce-
nario 1 are shown in Figure 6.5. The values provided by the model checker
Uppaal correspond to the exact worst-case end-to-end latencies of the system.
The chart shows that the results of the MPA-RTC and SymTA/S analyses
slightly exceed the exact worst-case latencies for small jitter values and that
the pessimism grows with increasing jitter values.

Regarding the results of the MAST tool, we have described in Section 3.7
that this approach considers input jitters already as delays because the calcula-

64 Chapter 6

tion of the worst-case end-to-end latency is referred to the ideal periodic arrival
time of the input event (and not to its actual arrival time as in other methods).
This explains why the analysis results of the MAST tool become worse with
increasing jitter values.

5

10

15

20

25

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 45 50

jitter I1 [ms]

en
d

-t
o

-e
n

d
 d

el
ay

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES random

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.5: Worst-case end-to-end delay for scenario 1

Figure 6.6 shows the worst-case end-to-end delays provided by the different
tools for scenario 2. Again, the Uppaal values correspond to the real end-to-
end latencies of the system. The chart shows clearly that the cyclic dependency
represents a serious difficulty for the analytic methods: the fixed point iteration
produces very poor results in the case of MPA-RTC and even worse results in
the case of SymTA/S.

In scenario 1 the running times to compute the worst-case delays are not
relevant for most methods, except for Uppaal. The exhaustive model checking
quickly becomes computationally expensive for large jitter values (up to 50s for
one single step of binary search4).

In contrast, in scenario 2 SymTA/S has the longest running times (up to
30s) due to the fixed point calculation performed.

4On a standard PC (Intel Pentium 4 with 512MB RAM)

Case studies - Comparison in numbers 65

0

25

50

75

100

125

150

175

200

0 5 10 15 20 25 30 35 40 45 50

jitter I1[ms]

en
d

-t
o

-e
n

d
 d

el
ay

 [
m

s]
MPA-RTC

SymTA/S

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.6: Worst-case end-to-end delay for scenario 2

6.3 Case study 3: Variable Feedback

The intention of this case study is to compare the various performance analysis
methods with respect to the analysis of buffer requirements and latencies in
feedback loops.

This case study is very similar to the problem No. 5 in the pool of small
performance analysis benchmarks defined at the ARTIST2 Workshop on Dis-
tributed Embedded Systems 2005 [18]. The following specification differs from
the original problem definition in the WCET of T2 (see system definition be-
low). We have modified this parameter in order to shift the system to a design
point that is more sensitive to variations of the input event streams.

Specification

Figure 6.7 depicts the topology of the system. An event stream with burst
I2 is processed serially by three tasks running on two independent CPUs and
forming a feedback loop. Both CPUs implement fixed-priority scheduling and
the event stream I2 is disturbed by the upper event stream I1 as task T3 may
preempt task T4. The performance characteristics to be determined are the
maximum backlog of task T2 and the worst-case end-to-end delay from I2 to
O2. The feedback behavior of stream I2 depends strongly on the period of the
event stream I1. Altering the period of I1 may cause the correlation effects

66 Chapter 6

between T1 and T2 to vary considerably; thus the name ’Variable Feedback’
for the case study.

In order to examine the influence of I1 on the feedback behavior of I2,
we repeat the performance analysis for period values of I1 from P = 4 ms to
P = 30ms.

T1

CPU1

T2

T3

T4

CPU2

I1

I2

O1

O2

Input streams I1: periodic (P=4ms)
I2: periodic with burst (P=100ms, J=200ms, d=0ms)

Resource sharing CPU1: FP preemptive, CPU2: FP preemptive

Task WCETs T1: 20ms, T2: 15ms, T3: 3ms, T4: 20ms

Scheduling param. priority T1: high, priority T2: low
priority T3: high, priority T4: low

Figure 6.7: Specification of the case study ’Variable Feedback’

Modeling

The modeling of the system with the various performance analysis methods is
straightforward and does not present particular difficulties. The corresponding
models can be found in Appendix Section C.3

Results and Discussion

Figure 6.8 shows the worst-case backlogs for task T2, determined by the dif-
ferent methods. Uppaal provides the exact backlog values through exhaustive
model checking. The curve of the exact backlog values shows an interesting
behavior: with increasing period values of stream I1 the influence on stream I2
(in terms of preemptions of task T4) diminishes and thus the events of stream
I2 tend to accumulate less in the buffer of T4 and more in the buffer of T2.
In other words, the backlog of T2 increases with increasing period values of

Case studies - Comparison in numbers 67

I1. However, if the period of I1 exceeds a certain value (22 ms) the correlation
effect between T1 and T2 changes and the backlog of T2 diminishes.

The chart in Figure 6.8 demonstrates that the analytic performance evalu-
ation methods are not able to detect this behavior: instead of the exact max-
imum backlog of 2 processing requests MPA-RTC provides a backlog of 3 and
SymTA/S of 4 processing requests. On the other hand the PESIMDES simu-
lation does not always cover the worst-case and underestimates the maximum
backlog.

0

1

2

3

4

5

4 6 8 10 12 14 16 18 20 22 24 26 28 30

period I1 [ms]

b
ac

k
lo

g
 T

2

MPA-RTC

SymTA/S

PESIMDES 90-5-5

Uppaal

Figure 6.8: Worst-case backlog for T2

Figure 6.9 shows the analysis results for the worst-case end-to-end delay
from I2 to O2. The model checker Uppaal permits to verify the exact worst-
case delays. However, the large jitter of I2 leads to a huge state space and
extremely time-consuming verifications. While for large period values of I1
the verification time is just a few seconds, for small period values the Uppaal
verification time becomes unbearable due to the state space explosion. For
instance for PI1 = 6ms the verification time for one single step of the binary
search is nearly one hour. For PI1 = 4ms the verifier runs out of memory after
a few hours of verification on a PC with 512MB main memory.

68 Chapter 6

80

120

160

200

240

280

320

360

400

4 6 8 10 12 14 16 18 20 22 24 26 28 30

period I1 [ms]

en
d
-t

o
-e

n
d
 d

el
ay

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES random

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.9: Worst-case delay I2-O2

6.4 Case study 4: AND/OR task activation

The purpose of this case study is to compare the different performance analysis
approaches with respect to modeling effort and analysis accuracy for tasks with
multiple activation. In particular we consider tasks with multiple input ports
with AND-activation and OR-activation, respectively.

This case study is denoted as problem No. 3 in the pool of small perfor-
mance analysis benchmarks defined at the ARTIST2 Workshop on Distributed
Embedded Systems 2005 [18].

Specification

We consider two different scenarios. The first one is depicted in Figure 6.10(a).
The system consists of two event streams I1 and I2 and an OR-activated task
T1. OR-activation means that each event from any of the two inputs I1 or
I2 triggers T1. The two activation queues are served by T1 in FCFS-order1

and can actually be replaced by one single buffer in which the events from
both input stream generators are queued up. The performance characteristics

1First-Come-First-Served

Case studies - Comparison in numbers 69

to be determined are the worst-case latencies I1-O1 and I2-O1 as well as the
maximum backlog of T1.

The second scenario is represented in Figure 6.10(b). The system consists
of two event streams I3 and I4 and an AND-activated task T2. AND-activation
means that one event from both inputs must be available in order to activate T1.
The performance characteristics to be determined are the worst-case latencies
I3-O2 and I4-O2 as well as the worst-case total buffer size.

In order to examine the influence of the WCET of T1 and T2 on the latencies
and buffer sizes, we repeat the performance analysis for WCET values of T1
and T2 from 5ms to 60ms.

I1

T1

CPU1

I2

O1
OR

(a) OR-activation

AND
 T2

CPU2

I4

I3

O2

(b) AND-activation

Input streams
I1: periodic with jitter (P=100ms, J=20ms)
I2: periodic with jitter (P=150ms, J=60ms)
I3: periodic with jitter (P=100ms, J=10ms)
I4: periodic with burst (P=100ms, J=190ms, d=20ms)

Task WCETs T1: 40ms, T2: 40ms

Figure 6.10: Specification of the case study ’AND/OR task activation’

Modeling and Analysis

The modeling of the two simple systems turns out to be straightforward only
with the SymTA/S tool. With all the other approaches either modeling diffi-
culties are encountered or some particular procedures or implementations are
necessary:

MAST

We were not able to analyze the AND-activation with the current version
of the MAST tool (v1.3.6). Although MAST provides a so called barrier
event handler which allows to model the AND-activation, the tool inter-
rupts the analysis with the following exception: Feasible Processing Load

not yet implemented for Multiple-Event systems.

For the OR-activation the same problem is encountered; however, the la-
tencies can be analyzed with a workaround model: instead of modeling one

70 Chapter 6

single transaction with an OR-activation (using a so called concentrator
event handler), two distinct transactions I1-O1 and I2-O1 that contend
the task T1 can be used.

UPPAAL

The AND-activation can be easily modeled by performing minor adjust-
ments to the timed automata network described in Section 3.6. The
modeling of the OR-activation is, however, more involved. The problem
is that in order to analyze the latencies I1-O1 and I2-O1 the activations
of T1 caused by the input streams I1 and I2 respectively must be distin-
guishable. Moreover, the FCFS order must be respected for the activation
requests. Hence, the activation buffer can no longer be represented by a
counter variable and must be modeled explicitly. Figure 6.11 shows the
timed automaton used to model the activation buffer. Basically, the au-
tomaton has a location for every possible buffer state.

BUFFER_too_small

_2
_1

_22_12_21_11

_222_122_212_112_221_121_211_111

write2?
write1?write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?
write1?

read2?

read1?

read1?

read2?

read2?
read1?

read2?

read1?
read2?

read2?

write2?
write2?write1?

write2?write1?
write2?

write1?

write2?

write1?
write2?

read2?

write2?

read1?
write1?

read1?

write1?

read1?

write1?

Figure 6.11: TA model for the activation buffer

In the current case study the backlog of T1 does not exceed 3 activation
requests and thus the automaton has ’only’ 16 locations. However, the
number of locations grows exponentially with the maximum backlog: for
an OR-activated task with m inputs and a maximum backlog of n ac-
tivation requests, an automaton with mn+1−1

m−1 + 1 locations is required.
Therefore, in general, this way of modeling the OR-activation involves an
impractical modeling and verification effort.

Case studies - Comparison in numbers 71

MPA-RTC

The analysis of the system in Figure 6.10(b) with MPA-RTC requires
some extra attention. In particular, in MPA-RTC the AND-activation is
implemented as shown in Figure 6.12. Input events remain in the buffer
B1 only as long as the buffer B2 is empty and vice versa. As soon as a
’partner’ event arrives on the other input, the two events merge and pass
to buffer BT . Thus, either B1 or B2 is always empty.

T
AND

B
1

B
2

B
T

Figure 6.12: AND-activation in MPA-RTC

If the default MPA-RTC functions for delay and backlog analysis are
called on the processing component modeling the task T, the correspond-
ing analysis considers only the activation buffer BT . However, in the
current case study buffers B1 and B2 also need to be considered.

Therefore, in order to calculate upper bounds for the worst-case end-to-
end delays we add to the worst-case response time of T the maximum
time that an event may spend in B1 or B2 respectively. This time can be
easily computed as the maximum horizontal distance between the upper
arrival curve of one input and the lower arrival curve of the other input.
Upper bounds for the buffer sizes of B1 and B2 can be calculated in an
analogous way using the maximum vertical distance between the arrival
curves. Moreover, in order to draw a fair comparison with the other ap-
proaches, the buffer size of BT is counted twice when estimating the total
buffer size of the system. This is necessary to compensate the merging
of events before the queue BT which does not occur in the original case
study.

These simple adjustments guarantee upper bounds for the required per-
formance quantities, but may in general provide pessimistic results.

PESIMDES

The PESIMDES simulator provides the maximum observed fill level for
every single buffer of the system. However, it cannot trace the progres-
sion of the sum of two or more buffer sizes. To estimate the total required
buffer size for a task with multiple activation, we simply sum the maxi-
mum observed fill levels of all the input buffers. However, this can easily

72 Chapter 6

lead to an overestimation, as the total worst-case buffer size of a task
with multiple inputs is in general not the sum of the worst-case sizes of
the single input buffers.

All the corresponding modeling solutions are included in Appendix Section C.4.

Results and Discussion

Figure 6.13 and Figure 6.14 respectively show the worst-case delays from I1
to O1 and the worst-case backlogs for T1 determined by the different methods
for the first scenario (OR-activation). The values calculated by the Uppaal
model checker represent the exact system performance. As suspected, by adding
the two worst-case buffer sizes observed by PESIMDES, the actual worst-case
backlog of T1 is overestimated in some cases. This shows that in these cases
the two input buffers do not reach their worst-case filling contemporarily.

0

20

40

60

80

100

120

140

160

180

5 10 15 20 25 30 35 40 45 50 55 60

WCET T1 [ms]

en
d
-t

o
-e

n
d
 d

el
ay

 I
1
-O

1
 [

m
s]

MPA-RTC

SymTA/S

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.13: Worst-case delay I1-O1 (OR-activation)

Figure 6.16 and Figure 6.17 depict the estimated worst-case end-to-end de-
lays from I3 to O2 and from I4 to O2 respectively. The exact delays determined
by Uppaal show that the worst-case latency I4-O2 is much lower than the worst-
case latency I3-O2. This is because events generated by I3 may have to wait
much longer for a ’partner’ event than events generated by I4, which results
from the different parameters of the two input streams: while the maximum

Case studies - Comparison in numbers 73

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50 55 60

WCET T1 [ms]

b
a
c
k

lo
g

 T
1

MPA-RTC

SymTA/S

PESIMDES 90-5-5

Uppaal

Figure 6.14: Worst-case backlog for T1 (OR-activation)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

5 10 15 20 25 30 35 40 45 50 55 60

WCET T1 [ms]

to
ta

l
b

u
ff

er
si

ze

MPA-RTC

SymTA/S PESIMDES 90-5-5

Uppaal

Figure 6.15: Worst-case total buffer size (AND-activation)

74 Chapter 6

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50 55 60

WCET T1 [ms]

e
n

d
-t

o
-e

n
d

 d
e
la

y
 I

3
-O

2
 [

m
s]

MPA-RTC

SymTA/S

PESIMDES 90-5-5

Uppaal

Figure 6.16: Worst-case delay I3-O2 (AND-activation)

0

50

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40 45 50 55 60

WCET T1 [ms]

en
d

-t
o

-e
n

d
 d

el
ay

 I
4

-O
2

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES 90-5-5

Uppaal

Figure 6.17: Worst-case delay I4-O2 (AND-activation)

Case studies - Comparison in numbers 75

distance between two events generated by I3 is 110ms, two events generated
by I4 may have a maximum distance of 290ms.

However, the charts show that the analytic performance evaluation ap-
proaches are not able to detect this difference: both MPA-RTC and SymTA/S
respectively provide the same bounds for the two end-to-end delays. The result
is a very pessimistic upper bound for the worst-case latency I4-O2.

Figure 6.15 shows the results provided by the different approaches for the
total buffer size required to handle the AND-activation.

6.5 Case study 5: Intra-context information

The intention of this case study is to compare the various approaches with
respect to the ability to exploit event type correlations within the activation
sequence of a task. In particular, tasks can be activated in many real systems by
different types of events yielding to different WCETs. Often information about
the sequence of activating event types is available from the system context. This
so called intra-context information can be exploited to determine tight bounds
for the worst-case system performance.

This case study is very similar to the problem No. 4 in the pool of small
performance analysis benchmarks defined at the ARTIST2 Workshop on Dis-
tributed Embedded Systems 2005 [18]. The following specification differs from
the original problem definition in the period of the input event streams. We
have modified these parameters in order to allow the analysis with all the meth-
ods considered. With the original parameters a numerical comparison would
not have been possible as for context-blind analysis methods the original system
results not schedulable.

Specification

Figure 6.18 depicts the topology of the system under consideration. Two event
streams are processed by two tasks on a CPU that implements fixed-priority
scheduling. In particular, T1 decodes an MPEG stream generated by I1. The
worst-case execution time of T1 varies according to the decoded frame type I,
P or B. We assume that I1 repeatedly generates the following frame pattern: I
B B P B B. The performance characteristic to be determined is the worst-case
response time of T2.

In order to point out the influence of the varying workload of T1 on the
response time of T2, we repeat the performance analysis for several different
ratios between the WCETs of T1. We start with equal WCETs for I, P and B

76 Chapter 6

T1

CPU

T2

O1

O2

B
 B
 P
 B
 B
 I

I1

I2

Input streams I1: periodic (P=200ms), I2: periodic (P=1000ms)

Resource sharing CPU: FP preemptive

Task WCETs T1: 80ms (mode I), 40ms (mode P), 20ms (mode B)
T2: 200ms

Scheduling param. priority T1: high, priority T2: low

Figure 6.18: Specification of the case study ’Intra-context information’

frames. In this case the intra-event correlations do not affect the performance of
the system. Then, we gradually diminish the WCETs of T1 for P and B frames
in proportion to the WCET for I frames. In this way we expect to observe
an increasing advantage for analysis methods that exploit the intra-context
information.

Modeling

Not all the performance analysis methods considered support the modeling of
intra-context information. For instance with the current version of the MAST
tool only a context-blind analysis is feasible.

In MPA-RTC the specified system can be easily modeled by representing
the cyclic frame pattern with an appropriate arrival curve. Also in Uppaal the
cyclic frame pattern and the influence of the event types on the workload can be
modeled with some changes to the original timed automata models described in
Section 3.6. The respective models are included in the Appendix Section C.5.

While in Uppaal and MPA-RTC customized models are necessary to take
intra-context information into account, in SymTA/S there is no additional mod-
eling effort: the user just needs to describe the context characteristics of the
typed event stream in appropriate input fields.

The current modeling scope of the PESIMDES stand-alone tool does not
yet cover typed events and intra-event correlations. However, as described in
Chapter 4, the simulator can be easily extended and the integration of intra-
context information is planned as future work.

Case studies - Comparison in numbers 77

Results and Discussion

Figure 6.19 shows the various values provided for the worst-case response time
of T2. The Uppaal curve represents the exact worst-case response times of T2,
verified by exhaustive model checking. As expected, ignoring the intra-context
information leads to increasingly pessimistic results with decreasing execution
demands for P and B frames.

250

275

300

325

350

375

400

80 77 74 71 68 65 62 59 56 53 50 47 44 41 38 35 32 29 26 23 20 17 14 11 8 5

80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30

80 80

WCET T1 [ms]

mode B

mode P

mode I

W
C

R
T

 T
2

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES (context blind)

MAST (context blind)

Uppaal

Figure 6.19: Worst-case delay I2-O2

6.6 Case study 6: Workload correlations

The purpose of this case study is to compare the various performance anal-
ysis methods with respect to the results provided for systems with workload
correlations. In particular, in many embedded systems different events cause
different execution demands on several tasks and often these execution demands
are highly correlated. For instance in many data processing systems the execu-
tion demand of most tasks depends on the payload of the triggering event: an
event with a small payload will cause a small execution demand on most tasks
whereas an event with a large payload will impose a heavy workload on most
tasks. The consideration of such workload correlations can lead to a much more
accurate performance analysis.

78 Chapter 6

The example system considered in this case study was first presented by
Wandeler and Thiele in [30], where an abstract model to characterize and cap-
ture workload correlations is introduced.

Specification

Figure 6.20 shows the topology of the system considered. The event generator
I1 generates a periodic event stream with burst. The generated events can be
either of type A or B. Both event types are equally probable and there are no
intra-event correlations, i.e. the arrival pattern is random. The events A and
B impose different workloads on T1 and and T2. In particular, there is a clear
correlation between the workloads of T1 and T2: an event of type A creates a
high workload on both tasks, while an event of type B creates a low workload
on both tasks.

The system also processes a second event stream generated by I2. The
events of this stream are of a single type and all have the same worst-case
execution demand for T3. The performance attribute sought is the worst-case
latency form I2 to O2, i.e. the worst-case response time of T3.

I1
 T2

CPU2

T1

CPU1

T3
I2

O1

O2

p
A
= 50%

p
B
 = 50%

Input streams I1: periodic with burst (P=4ms, J=15ms, d=1ms)
I2: periodic with jitter (P=6ms, J=1ms)

Resource sharing CPU2: FP preemptive

Execution demands

T1(A): 20000 cycles , T1(B): 5000 cycles
T2(A): 15000 cycles, T2(B): 5000 cycles
T3: 5000 cycles

Scheduling param. priority T2: high, priority T3: low

CPU speeds CPU1: 6MHz, CPU2: 6MHz

Figure 6.20: Specification of the case study ’Workload correlations’

In order to examine the accuracy of the determined delay for several dif-
ferent system configurations, we repeat the performance analysis for increasing
processor speeds of CPU2.

Case studies - Comparison in numbers 79

Modeling

Not all the considered performance analysis methods can model the workload
correlation described in the above specification properly. In some cases the
modeling is possible but requires particular adjustments.

SymTA/S and MAST

With these two tools the different execution demands of the event types
A and B can only be considered as the worst-case execution demand or
the best-case execution demand for a task. However, there is no way to
model the fact that events with a low execution demand for T1 also have
a low execution demand for T2. Therefore we expect overly pessimistic
analysis results for these approaches.

Uppaal

The timed automata networks described in Section 3.6 can be extended to
allow the modeling of typed events and variable task workload. However,
the same obstacle as in Case study 4 is encountered: the activation buffers
of T1 and T2 can no longer be represented anymore as simple counter
variables but need to be modeled explicitly, as the events of type A and
B must be distinguishable.

Figure 6.21 shows the timed automaton used to model the activation
buffer of T1. Again, the automaton has a location for every possible buffer
state up to a buffer size of four events, which is sufficient for the particular
case study. Nevertheless, the modeling effort is already enormous.

The number of locations grows exponentially with the required buffer size.
Thus, this modeling solution is inapplicable in general.

MPA-RTC

The workload correlations can be easily modeled with the MPA-RTC
toolbox. The corresponding model is included in Appendix Section C.6.
More details about the integration of workload correlations in the modular
performance analysis framework can be found in [30].

PESIMDES

The PESIMDES stand-alone tool does not yet support typed events and
can therefore not be used to simulate the specified system. However,
starting from the PESIMDES library we have implemented an ad-hoc
SystemC simulation for the described system with very little effort.

80 Chapter 6

BUFFER_T1_too_small

BA

BBABBAAA

BBBABBBABAABBBAABABAAAAA

BBBBABBBBABBAABBBBABABABBAABAAABBBBAABBABABAAABABBAAABAABAAAAAAA

AinBUF1==2 || BinBUF1==4
hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==3 || BinBUF1==3
hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==1 || BinBUF1==5

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3
hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==5 || BinBUF1==1
hurry!

prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--

prIA?

AinBUF1--

prIB?

BinBUF1--

prIA?

AinBUF1--

prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--prIA?AinBUF1--
prIB?

BinBUF1--
prIA?

AinBUF1--

prIB?

BinBUF1-- BinBUF1==4
hurry!

AinBUF1==1
hurry!BinBUF1==3

hurry!

AinBUF1==2
hurry!BinBUF1==3hurry!

AinBUF1==2

hurry!
BinBUF1==2

hurry!
AinBUF1==3

hurry!
BinBUF1==3

hurry!

AinBUF1==2hurry!

BinBUF1==2
hurry!

AinBUF1==3
hurry!

BinBUF1==2
hurry!

AinBUF1==3
hurry!

BinBUF1==1
hurry!

prIB?
BinBUF1--

prIA?
AinBUF1--

prIA?
AinBUF1--

prIB?
BinBUF1--

prIB?
BinBUF1--

prIA?
AinBUF1--

prIB?
BinBUF1--

prIA?

AinBUF1--

prIB?
BinBUF1--

prIB?
BinBUF1--

BinBUF1==1
hurry!

BinBUF1==2
hurry!

AinBUF1==2
hurry! BinBUF1==2

hurry!AinBUF1==2
hurry!

BinBUF1==3
hurry!AinBUF1==1

hurry!

BinBUF1==2
hurry!

AinBUF1==1
hurry!

BinBUF1==1
hurry!

prIB?
BinBUF1--

BinBUF1==1
hurry!

prIA?
AinBUF1--

AinBUF1==4
hurry!

prIA?
AinBUF1--

AinBUF1==3
hurry!

prIA?
AinBUF1--

AinBUF1==2
hurry!

prIA?
AinBUF1--

AinBUF1==1
hurry!

Figure 6.21: TA model for the activation buffer of T1

6 8 10 12 14 16 18 20 22 24

f PII [MHz]

W
C

R
T

 T
3

 [
m

s]

MPA-RTC

SymTA/S

PESIMDES 90-5-5

MAST

Uppaal

Figure 6.22: Worst-case delay I2-O2

Case studies - Comparison in numbers 81

Results and Discussion

Figure 6.22 shows the results provided by the different performance analysis
methods. As usual, the Uppaal data series has been determined with exhaustive
model checking and represents the exact worst-case response time of T3. The
chart shows clearly that by ignoring the workload correlations the worst-case
performance of the system is considerably overestimated. In particular, as
expected, the SymTA/S and MAST methods provide overly pessimistic bounds
for the worst-case performance.

6.7 Case study 7: Data dependencies

The intention of this case study is to illustrate the ability of the various per-
formance analysis approaches to deal with data dependencies that may exist
among the tasks of a distributed embedded system. In particular, the activation
times of various tasks are not independent in many systems: data dependencies
force the tasks to be executed in a certain order and impose temporal offsets
between their activation. These dependencies can be exploited to determine
tight bounds for the worst-case system performance.

The system analyzed in this case study is an example provided by Yen and
Wolf in [32], where an algorithm to determine tight bounds on the execution
time of systems with data dependencies is presented.

I1

T2

T1

CPU

T3
I2

O1

O2

Input streams I1: periodic (P=80ms), I2: periodic (P=50ms)

Resource sharing CPU: FP preemptive

Task WCETs T1: 15ms, T2: 20ms, T3: 10ms

Scheduling param. priority T1: high, priority T2: medium, priority T3: low

Figure 6.23: Specification of the case study ’Data dependencies’

82 Chapter 6

Specification

Figure 6.23 depicts the considered system. Two periodic event streams are
processed by three tasks on a CPU that implements preemptive fixed priority
scheduling. The data dependency is given by the processing sequence T2-T3.
The performance characteristic to be determined is the worst-case end-to-end
delay from I2 to O2.

We repeat the performance analysis for WCETs of T1 between 15ms and
30ms.

Modeling

The system can be easily modeled with all the considered performance analysis
tools. The corresponding models are included in Appendix Section C.7.

Results and Discussion

0

20

40

60

80

100

120

140

160

180

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

WCET T1 [ms]

en
d

-t
o

-e
n

d
 d

el
ay

 I
2-

O
2

[m
s]

MPA-RTC

SymTA/S

PESIMDES

MAST

Uppaal

Figure 6.24: Worst-case delay I2-O2

Figure 6.24 represents the worst-case latencies I2-O2 determined by the
various methods. The Uppaal curve indicates the exact worst-case latencies
verified by model checking. The chart shows that MPA-RTC and SymTA/S
provide very pessimistic bounds for the worst-case system performance. The
overly pessimistic analysis results from the disregard of the data dependencies.
Let us consider, for instance, the system configuration with WCETT1 = 15 ms.
It is easily traceable that in this configuration

Case studies - Comparison in numbers 83

1. T1 can only preempt either T2 or T3, but not both in a single execution

2. T2 cannot preempt T3

Hence, the worst-case latency I2-O2 is 45ms. However, MPA-RTC and
SymTA/S ignore the data dependencies between T2 and T3 and consider their
activation times independently. Thus, they suppose a worst-case response time
of 35ms for T1 and 45ms for T2 and estimate the worst-case latency I2-O2
with 80ms, the sum of the two delays.

In contrast, the MAST tool implements an offset based analysis that detects
the data dependencies described. The figure shows that the MAST results
correspond precisely to the exact worst-case latencies.

6.8 Overview

In this section we summarize the results obtained in terms of accuracy by the
different performance analysis methods for the case studies described in this
chapter. In particular we give an overview of the degree of pessimism of the
various performance analyses in Figures 6.25 and 6.26. For every case study and
every method we indicate the interval of the analysis results obtained relative
to the real performance characteristic of the system (100%). The intervals are
represented as vertical bars: the lower edge of a bar indicates the result of the
least pessimistic analysis and the upper edge the result of the most pessimistic
analysis performed for the different parameters. For instance, Figure 6.25 shows
that for the analysis series of scenario 2 in the case study Cyclic dependencies
(see Section 6.2) the performance analysis method MPA-RTC produced results
in the interval between 144% (best analysis result) and 407% (worst analysis
result) of the actual system performance. A dot on the 100%-mark indicates
that the corresponding analysis method provided exact performance results for
all the parameter values of the corresponding case study.

The two charts also show the results obtained by simulation with the
PESIMDES-tool. In this case the bars are normally below the 100%-mark
which indicates over-optimistic performance estimations. There are, however,
a few exceptions where the bars are above the 100%-mark, i.e. the simulation
overestimates the system performance. This happens if the simulation model
is not able to capture particularities of the system specification. For instance
in the case study Intra-context information (see Section 6.5) PESIMDES over-
estimates the system performance because it cannot model variable execution
demands and thus assumes the worst-case execution demand for every task
activation.

84 Chapter 6

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Delay Backlog Delay (scen.1) Delay (scen.2) Delay Backlog

Pay burst only once Cyclic dependencies Variable feedback

1324%

PESIMDES

Uppaal

MAST

SymTA/S

MPA-RTC

= 100 % (exact analysis)

Figure 6.25: Overview of analysis accuracy (part 1)

Case studies - Comparison in numbers 85

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

Backlog Buffersize Delay

OR-activation AND-activation Intra-

context

Workload

 correl.

 Data

depend.

600%580%

DelayDelayDelay 2Delay 1Delay

PESIMDES

Uppaal

MAST

SymTA/S

MPA-RTC

= 100 % (exact analysis)

Figure 6.26: Overview of analysis accuracy (part 2)

86 Chapter 6

The charts indicate that the performance analysis method based on the
Uppaal model checker provides exact analysis results for all the case studies.
Regarding the other performance analysis methods, one can see that for most
of the case studies analyzed MPA-RTC provides better results than SymTA/S,
which in turn provides better results than the MAST tool. However, there are
also exceptions to this trend.

Overall, except for the Uppaal-approach based on model checking, no per-
formance analysis method did better than another in all the case studies con-
sidered. This means that the accuracy of the different approaches significantly
depends on the particular system characteristics and parameters.

Moreover, we would like to point out that the Uppaal approach is not the
panacea for performance analysis: the exact results are often paid for by a
huge analysis effort. For instance, for single parameter configurations of the
case study Variable Feedback (see Section 6.3) the running time of the Uppaal
model checker is up to a thousand times longer than the analysis time of the
other methods.

Chapter 7

Conclusions

7.1 Conclusions

We have given an initial contribution to the evaluation and comparison of meth-
ods for performance analysis of distributed embedded systems. With respect
to previous work this thesis has shifted the focus from the presentation and re-
finement of single performance analysis approaches to their benchmarking and
comparison.

We presented an overview of several formal approaches to performance anal-
ysis and examined the various methods with respect to analyzable performance
metrics, modeling scope, accuracy, modularity, analysis effort and scalability.
We also evaluated modeling effort, tool support and end-user complexity for
the approaches considered. By means of such evaluations and comparisons we
support system designers in choosing the performance analysis method that is
most suitable for their particular requirements.

We showed that the different approaches are very heterogeneous in terms of
modeling power and usability. In addition, the considered case studies demon-
strated that there are important differences with respect to the accuracy of the
various analysis methods. These results highlight some modeling difficulties and
analysis pitfalls of the different approaches. In particular, the results can drive
some research on the improvement of the single performance analysis methods.

Moreover, the comparison showed that the accuracy ranking of the various
performance analysis methods varies for different systems. This means that no
analysis approach always provides better results than another. Hence, it makes
sense for a system designer to combine different performance analysis methods
in order to obtain accurate performance predictions.

Further, we showed that it can be very useful to combine formal performance
analysis with performance simulation. While in general there is no way to
determine the accuracy of performance bounds provided by a formal method,

88 Chapter 7

in combination with performance simulation more significant conclusions about
the accuracy of the analysis may be reached.

7.2 Outlook

There are several interesting topics for future research in the context of this
thesis.

First of all, the set of benchmark problems can and should be extended.
In this thesis the evaluation and comparison of performance analysis methods
is based on a few case studies reproducing important properties of distributed
embedded systems. However, there are several other common system attributes
that have not yet been considered. For instance it could be interesting to
compare the various performance analysis methods with respect to the analysis
of:

• systems with dynamic scheduling policies (e.g. EDF)

• systems with hierarchical scheduling

• systems with timing correlations among different event streams

• systems with control dependencies

• systems with shared resources that are accessed in mutual exclusion

• systems with traffic shaping

In addition, it would be useful to examine in more detail the scalability of
the different performance analysis approaches by analyzing larger systems. This
thesis contains some consideration of scalability in terms of modeling effort.
However, it would also be very interesting to analyze the scalability of the
different methods with respect to accuracy and analysis effort.

Furthermore, the evaluation and comparison should be extended to other
performance analysis methods not considered in this thesis. Moreover, a com-
parison with approaches apart from formal analysis or simulation could be
useful. For instance it would be interesting to consider stochastic performance
analysis approaches.

Finally, it would be very helpful to automate the combined application of
different performance analysis methods. In this thesis the first steps towards
the automated combination of methods were already taken by defining the draft
of a tool-independent data format for the description of distributed embedded
systems and their performance analysis. This format can be extended and on

Conclusions 89

top of it appropriate transformers can be implemented, which convert the com-
mon system description into the proprietary formats of the single performance
analysis tools.

90 Chapter

Appendix A

An extendible data format for the

description of distributed embedded

systems

This appendix presents a draft of an XML data format for the description of
distributed embedded system architectures and their performance analysis.

A.1 Motivation

Every tool for performance analysis has its own way to specify the system ar-
chitecture and the requested performance metrics. This makes the comparison
of performance analysis tools difficult, as several different descriptions for the
same system must be provided. To avoid this laborious and error-prone process
we introduce a draft of a tool-independent and extendible data format for the
description of distributed embedded systems and their performance analysis.

This XML format is a first step towards the automated combination of
performance analysis methods: on top of the XML format appropriate trans-
formers may be implemented, that convert the common system description into
the proprietary formats of the single performance analysis tools.

A.2 Example

This section provides a simple example of system description in the proposed
XML format.

Figure A.1 defines a distributed embedded system and the corresponding per-
formance characteristics to analyze.

92 Chapter A

T4

T3

T1

T5

T2

CPU1

CPU2

CPU3

AND

initial tokens

I1

I2

O2

O1

E
nd

-t
o-

en
d

de
la

y
?

Bufferspace
 ?

Input streams I1: periodic with burst (P=20ms, J=55ms, d=2ms)
I2: periodic (P=10ms)

Resource sharing CPU1: FP preemptive
CPU2: EDF preemptive

Task WCETs T1: 2ms, T2: 1ms, T3: 7ms,
T4: 3ms, T5: 8ms

Scheduling param. priority T1: high, priority T2: low,
rel. deadline T3: 18ms, rel. deadline T4: 35ms

Figure A.1: Example system

The corresponding XML description is given below.

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="yes"/>

<EDF name="CPU2" preemptive="yes"/>

<FP name="CPU3" preemptive="yes"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="20" unit="ms" />

<jitter value="55" unit="ms" />

<min_interarr value="2" unit="ms" />

</PJD>

<PJD name="I2">

<period value="10" unit="ms" />

</PJD>

</event_sources>

An extendible data format for the description of distributed embedded systems 93

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" input_no="2" activation_type="AND" />

<task name="T2" />

<task name="T3" />

<task name="T4" output_no="2" />

<task name="T5" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T3" />

<link src="T3" dest="O1" />

</task_graph>

<task_graph>

<link src="I2" dest="T1" dest_index="0" />

<link src="T1" dest="T4" />

<link src="T4" src_index="0" dest="T5" />

<link src="T4" src_index="1" dest="T1" dest_index="1" />

<link src="T5" dest="T2" />

<link src="T2" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="2" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU1">

<wcet value="1" unit="ms" />

<priority> 2 </priority>

</map>

<map task="T3" resource="CPU2">

<wcet value="7" unit="ms" />

<relative_deadline value="18" unit="ms" />

</map>

<map task="T4" resource="CPU2">

<wcet value="3" unit="ms" />

<relative_deadline value="35" unit="ms" />

</map>

<map task="T5" resource="CPU3">

<wcet value="8" unit="ms" />

<priority> 1 </priority>

</map>

</binding>

<state>

<token task="T1" input_index="1" quantity="2"/>

</state>

</system>

<observe>

<latency src="I2" dest="O2" />

<backlog task="T2" />

</observe>

</performance_analysis>

94 Chapter A

A.3 Description of the data format - XML Schema

The following XML Schema definition describes formally the structure of ad-
missible system specifications in form of XML files.1

<?xml version="1.0" encoding="ISO-8859-1" ?> <xs:schema xmlns:xs=

"http://www.w3.org/2001/XMLSchema">

<!--*******************************__Root_element__*************************************-->

<xs:element name="performance_analysis">

<xs:complexType>

<xs:sequence>

<xs:element ref="system"/>

<xs:element ref="observe"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<!--**-->

<xs:element name="system">

<xs:complexType>

<xs:sequence>

<xs:element ref="resources"/>

<xs:element ref="event_sources"/>

<xs:element ref="event_sinks"/>

<xs:element ref="tasks"/>

<xs:element ref="task_graphs"/>

<xs:element ref="binding"/>

<xs:element ref="state" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="observe">

<xs:complexType>

<xs:sequence>

<xs:group ref="group_observe" />

<xs:group ref="group_observe" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<!--**-->

<xs:element name="resources">

<xs:complexType>

<xs:sequence>

<xs:group ref="group_resources" />

<xs:group ref="group_resources" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="event_sources">

<xs:complexType>

<xs:sequence>

<xs:group ref="group_event_sources" />

<xs:group ref="group_event_sources" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="event_sinks">

<xs:complexType>

<xs:sequence>

<xs:element name="event_sink" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:ID" use="required"/>

</xs:complexType>

</xs:element>

1Attention should be paid to the limited expressiveness of XML Schema: not every inconsis-
tency in the system description can be avoided through XML Schema restrictions! However,
an appropriate pre-processor may be implemented to undertake the remaining consistency
checks.

An extendible data format for the description of distributed embedded systems 95

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="tasks">

<xs:complexType>

<xs:sequence>

<xs:element name="task" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:ID" use="required"/>

<xs:attribute name="input_no" type="xs:integer" use="optional"/>

<xs:attribute name="activation_type" type="andor" use="optional"/>

<xs:attribute name="output_no" type="xs:integer" use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="task_graphs">

<xs:complexType>

<xs:sequence>

<xs:element name="task_graph" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="link" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="src" type="xs:IDREF" use="required"/>

<xs:attribute name="dest" type="xs:IDREF" use="required"/>

<xs:attribute name="src_index" type="xs:integer" use="optional"/>

<xs:attribute name="dest_index" type="xs:integer" use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="binding">

<xs:complexType>

<xs:sequence>

<xs:element name="bind" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="wcet" type="time" />

<xs:element name="priority" type="xs:integer" minOccurs="0" />

<xs:element name="rel_deadline" type="time" minOccurs="0" />

<xs:element name="slot_no" type="xs:integer" minOccurs="0" />

</xs:sequence>

<xs:attribute name="task" type="xs:IDREF" use="required"/>

<xs:attribute name="resource" type="xs:IDREF" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="state">

<xs:complexType>

<xs:sequence>

<xs:element name="token" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="task" type="xs:IDREF" use="required"/>

<xs:attribute name="input_index" type="xs:integer" use="optional"/>

<xs:attribute name="quantity" type="xs:integer" use="optional"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<!--**-->

<xs:group name="group_observe">

<xs:choice>

<xs:element name="latency">

<xs:complexType>

<xs:attribute name="src" type="xs:IDREF" use="required"/>

<xs:attribute name="dest" type="xs:IDREF" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="backlog">

<xs:complexType>

96 Chapter A

<xs:attribute name="task" type="xs:IDREF" use="required"/>

<xs:attribute name="input_index" type="xs:integer" use="optional"/>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:group>

<!--**-->

<xs:group name="group_resources">

<xs:choice>

<xs:element ref="FP"/>

<xs:element ref="EDF"/>

<xs:element ref="TDMA"/>

</xs:choice>

</xs:group>

<xs:element name="FP" type="resource_base"/>

<xs:element name="EDF" type="resource_base"/>

<xs:element name="TDMA">

<xs:complexType>

<xs:complexContent>

<xs:extension base="resource_base">

<xs:sequence>

<xs:element name="slots">

<xs:complexType>

<xs:sequence>

<xs:element name="slot" maxOccurs="unbounded">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>

<xs:attribute name="length" type="xs:decimal" use="required"/>

<xs:attribute name="unit" type="timeunit" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

</xs:element>

<xs:complexType name="resource_base">

<xs:attribute name="name" type="xs:ID" use="required"/>

<xs:attribute name="preemptive" type="yesno" use="required"/>

</xs:complexType>

<!--**-->

<xs:group name="group_event_sources">

<xs:choice>

<xs:element ref="PJD"/>

<xs:element ref="arrival_curve"/>

<xs:element ref="trace"/>

</xs:choice>

</xs:group>

<xs:element name="PJD">

<xs:complexType>

<xs:all>

<xs:element name="period" type="time"/>

<xs:element name="jitter" type="time" minOccurs="0"/>

<xs:element name="min_interarr" type="time" minOccurs="0"/>

</xs:all>

<xs:attribute name="name" type="xs:ID" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="arrival_curve">

<xs:complexType>

<xs:all>

<xs:element name="upper" type="xs:string"/>

<xs:element name="lower" type="xs:string"/>

</xs:all>

<xs:attribute name="name" type="xs:ID" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="trace">

<xs:complexType>

<xs:attribute name="name" type="xs:ID" use="required"/>

An extendible data format for the description of distributed embedded systems 97

<xs:attribute name="file" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<!--*******************************__Simple_types__*************************************-->

<xs:simpleType name="yesno">

<xs:restriction base="xs:string">

<xs:enumeration value="yes"/>

<xs:enumeration value="no"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="timeunit">

<xs:restriction base="xs:string">

<xs:enumeration value="s"/>

<xs:enumeration value="ms"/>

<xs:enumeration value="us"/>

<xs:enumeration value="ns"/>

<xs:enumeration value="ps"/>

<xs:enumeration value="fs"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="andor">

<xs:restriction base="xs:string">

<xs:enumeration value="and"/>

<xs:enumeration value="or"/>

</xs:restriction>

</xs:simpleType>

<!--**-->

<xs:complexType name="time">

<xs:attribute name="value" type="xs:decimal" use="required"/>

<xs:attribute name="unit" type="timeunit" use="required"/>

</xs:complexType>

<!--**-->

</xs:schema>

98 Chapter A

Appendix B

PESIMDES User Guide

This appendix provides a short user guide for the PESIMDES library.1 Only
basic SystemC skills are required to use the PESIMDES library for performance
estimation of distributed embedded systems.

B.1 Setup

PESIMDES is built on top of the SystemC 2.1 C++ class library provided by
OSCI2. It is necessary to download, compile and install the SystemC library
in order to use PESIMDES. Please refer to http://www.systemc.org/ for more
information about the setup of SystemC.

In order to use PESIMDES components it is necessary to download the
PESIMDES library and include it in your SystemC program:

#include <pesimdes.h>

Make sure that your compiler and linker can find the corresponding files of
the PESIMDES library.

B.2 Modeling

To model a distributed embedded system with PESIMDES for performance
analysis, it is sufficient to write a simple SystemC program that instantiates
and connects proper modules of the PESIMDES library. In particular it is
necessary to:

• instantiate the event stream generators

1available as open source software at http://www.mpa.ethz.ch
2The Open SystemC Initiative http://www.systemc.org/

100 Chapter B

• instantiate the event sinks

• instantiate the tasks

• instantiate the activation buffers

• instantiate the processing / communication resources

• assign the tasks to resources

• link the event generators, tasks, activation buffers and event sinks

In the following the modeling procedure is demonstrated considering the system
depicted in Figure B.1 as example.

T4

T3

T1

T5

T2

CPU1

CPU2

CPU3

AND

initial tokens

I1

I2

O2

O1

E
nd

-t
o-

en
d

de
la

y
?

Bufferspace
 ?

Input streams I1: periodic with burst (P=20ms, J=55ms, d=2ms)
I2: periodic (P=10ms)

Resource sharing CPU1: FP preemptive
CPU2: EDF preemptive

Task WCETs T1: 2ms, T2: 1ms, T3: 7ms,
T4: 3ms, T5: 8ms

Scheduling param. priority T1: high, priority T2: low,
rel. deadline T3: 18ms, rel. deadline T4: 35ms

Figure B.1: Example system

The following listing reports the SystemC code that models the system of
Figure B.1 using components of the PESIMDES library. The instantiation of
the event stream generators, tasks, activation buffers, resources and event sinks
is straightforward. More documentation about the single constructor calls can

PESIMDES User Guide 101

be found at the PESIMDES webpage.3 The same applies for the assignment of
tasks to resources and the connection of the various modules.

1 #include "pesimdes.h"

3 #define MAXBUFFER 1000

5 bool verbose = false;

8 int sc_main (int argc , char *argv []) {

10 // initialize the random number generator

11 srand (-24);

14 // Module instantiations

16 // Event stream generators

17 input_periodic_with_burst_uwj input_generator_1 ("I1",sc_time (20,

SC_MS),sc_time (55, SC_MS),sc_time(2,SC_MS),"input_trace_1.tra");

18 input_periodic input_generator_2 ("I2",sc_time (10,SC_MS),"

input_trace_2.tra");

20 // Tasks

21 task t1("T1" ,2,"AND" ,1);

22 task t2("T2");

23 task t3("T3");

24 task t4("T4" ,2);

25 task t5("T5");

27 // Resources

28 resource_n_tasks_fixed_priority_preemptive cpu_1("CPU1" ,2);

29 resource_n_tasks_EDF_preemptive cpu_2("CPU2" ,2);

30 resource_n_tasks_fixed_priority_preemptive cpu_3("CPU3" ,1);

32 // Event sinks

33 output_display display_1("O1");

34 output_display display_2("O2");

37 // Task mapping

38 cpu_1.assign_task(t1 ,0,sc_time(2,SC_MS) ,1);

39 cpu_1.assign_task(t2 ,1,sc_time(1,SC_MS) ,2);

40 cpu_2.assign_task(t3 ,0,sc_time(7,SC_MS),sc_time (18,SC_MS));

41 cpu_2.assign_task(t4 ,1,sc_time(3,SC_MS),sc_time (35,SC_MS));

42 cpu_3.assign_task(t5 ,0,sc_time(8,SC_MS) ,1);

45 // Channel instantiations

47 // Task activation buffers

48 my_sc_fifo <event_token > buffer_T1_1(MAXBUFFER);

49 my_sc_fifo <event_token > buffer_T1_2(MAXBUFFER);

50 my_sc_fifo <event_token > buffer_T2(MAXBUFFER);

51 my_sc_fifo <event_token > buffer_T3(MAXBUFFER);

52 my_sc_fifo <event_token > buffer_T4(MAXBUFFER);

53 my_sc_fifo <event_token > buffer_T5(MAXBUFFER);

3http://www.mpa.ethz.ch

102 Chapter B

55 // Dummy buffers for event sinks

56 sc_fifo <event_token > dummy_buffer_display_1 (1);

57 sc_fifo <event_token > dummy_buffer_display_2 (1);

60 // Port binding

62 // Stream I1 -O1

63 input_generator_1.out(buffer_T3);

64 t3.in[0](buffer_T3);

65 t3.out [0](dummy_buffer_display_1);

66 display_1.in(dummy_buffer_display_1);

68 // Stream I2 -O2

69 input_generator_2.out(buffer_T1_1);

70 t1.in[0](buffer_T1_1);

71 t1.out [0](buffer_T4);

72 t4.in[0](buffer_T4);

73 t4.out [0](buffer_T5);

74 t4.out [1](buffer_T1_2);

75 t1.in[1](buffer_T1_2);

76 t5.in[0](buffer_T5);

77 t5.out [0](buffer_T2);

78 t2.in[0](buffer_T2);

79 t2.out [0](dummy_buffer_display_2);

80 display_2.in(dummy_buffer_display_2);

83 // Initial state

84 set_initial_token(buffer_T1_2 ,2);

87 // Start simulation

88 sc_start (100000 , SC_MS);

91 // Print performance results

92 cout << "\nÃMax.ÃobservedÃEnd -to -EndÃDelayÃfromÃI2ÃtoÃO2:Ã" <<

sc_time_output(display_2.getmaxlatency("I2")) << "Ã(eventÃno.Ã"

<< display_2.getseqnoofmaxlatency("I2") << ")\n";

93 cout << "Max.ÃobservedÃBacklogÃT2:Ã" << buffer_T2.getmaxbacklog ()

<< "\n";

95 return 0;

96 }

Listing B.1: SystemC model for the example system based on the PESIMDES library

B.3 Simulation

Once the topology of the system is modeled by instantiating and connecting
proper PESIMDES modules, it is necessary to configure the simulation. In
particular the following simulation parameters must be set:

Maximum Buffersize

A maximum size for the task activation buffers must be specified (see line
3 of Listing B.1). Note that the buffer size does not influence the behavior

PESIMDES User Guide 103

of the system, i.e. a full buffer does not block a writing task. In case of
a buffer overflow an appropriate exception is raised and the simulation is
stopped.

Simulation length

The length of the simulation must be specified as parameter of the sc_start

call (see line 88 of Listing B.1), which determines the duration of the
SystemC simulation. Note that by this parameter you specify the amount
of time to simulate and not the running time of the simulation.

Simulation outputs

In order to obtain the estimations for the requested performance char-
acteristics of the system it is necessary to output the return values of
the functions getmaxlatency and getmaxbacklog called on the corresponding
components (see lines 92 and 93 of Listing B.1)

Random number generator

Various event generators make use of a random number generator. The
corresponding seed value can be set explicitly (see line 11 of Listing B.1).
By choosing twice the same seed number the results of a simulation can
be reproduced.

Verbose option

It is possible to instruct the PESIMDES components to print to standard
output a detailed simulation log. This is done by setting the verbose
flag (see line 5 of Listing B.1). The log traces generation, processing
and propagation of every single event in the system. Note that the use
of the verbose feature may increase significantly the running time of the
simulation.

104 Chapter B

Appendix C

Case studies - System models

This appendix contains the models used to analyze the performance charac-
teristics of the systems presented in chapter 6. The SymTA/S models were
generated with a graphical user interface and are reported in form of screen-
shots. The same applies for the Uppaal models, in this case we depict only the
corresponding timed automata networks. The corresponding SymTA/S and
Uppaal files are available online (as well as all other models reported in this
appendix).1

The following list specifies the versions of the tools used to perform the
various analyses:

• RTC Toolbox for Matlab v1.0 beta revision 319

• SymTA/S v0.8 beta EVAL

• MAST v1.3.6

• UPPAAL v3.5.9

• PESIMDES v0.1 beta

1http://www.mpa.ethz.ch

106 Chapter C

C.1 Models case study 1: Pay burst only once

MPA-RTC

% Author(s): E. Wandeler

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

%%%

% Setup of system parameters

%%%

% Event stream

% ===

p = 10;

j = 50;

d = 1;

% Worst-case execution demands

% ===

wced1 = 1;

wced2 = 4;

wced3 = 8;

% Processor speeds

% ===

cpu1 = 1;

cpu2 = 1;

cpu3 = 1;

%%%

% Construct input curves

%%%

tic;

% Construct the input arrival curves

% ===

aui1 = pjdu(p,j,d);

ali1 = pjdl(p,j,d);

% Construct the service curves

% ===

bui1 = fs(cpu1);

bli1 = fs(cpu1);

bui2 = fs(cpu2);

bli2 = fs(cpu2);

bui3 = fs(cpu3);

bli3 = fs(cpu3);

%%%

% Analysis.

%%%

% Compute the arrival and service curves through a chain of Greedy

% Processing Components.

% ===

[auo1 alo1 buo1 blo1] = gpc(aui1, ali1, bui1, bli1, wced1);

[auo2 alo2 buo2 blo2] = gpc(auo1, alo1, bui2, bli2, wced2);

[auo3 alo3 buo3 blo3] = gpc(auo2, alo2, bui3, bli3, wced3);

% Compute the total delay through service curve convolution.

% ===

delay_conv = del(aui1,bli1,wced1,bli2,wced2,bli3,wced3);

tTot = toc;

% Compute the total delay as the sum from the individual delays.

% ===

delay_add = del(aui1,bli1,wced1) + del(auo1,bli2,wced2) + del(auo2,bli3,wced3);

% Display the results.

% ===

disp([’Total Delay (computed with convolutions) : ’ num2str(delay_conv)])

disp([’Sum of the individual delays : ’ num2str(delay_add)])

disp([’Analysis Time : ’ num2str(tTot) ’s’])

Case studies - System models 107

MAST

Model (

Model_Name => p9,

Model_Date => 2005-12-20);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1);

Processing_Resource (

Type => Regular_Processor,

Name => CPU2);

Processing_Resource (

Type => Regular_Processor,

Name => CPU3);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduler (

Type => Primary_Scheduler,

Name => CPU2,

Host => CPU2,

Policy =>

(Type => Fixed_Priority));

Scheduler (

Type => Primary_Scheduler,

Name => CPU3,

Host => CPU3,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU2);

Scheduling_Server (

Type => Regular,

Name => T3,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU3);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 1,

Worst_Case_Execution_Time => 1);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 4,

Worst_Case_Execution_Time => 4);

Operation (

Type => Simple,

Name => T3,

Best_Case_Execution_Time => 8,

Worst_Case_Execution_Time => 8);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in,

Period => 10,

Max_Jitter => 70)),

Internal_Events => (

(Type => regular,

name => T1_out),

(Type => regular,

name => T2_out),

(Type => regular,

name => T3_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => in))),

Event_Handlers => (

(Type => Activity,

Input_Event => in,

Output_Event => T1_out,

Activity_Operation => T1,

Activity_Server => T1),

(Type => Activity,

Input_Event => T1_out,

Output_Event => T2_out,

Activity_Operation => T2,

Activity_Server => T2),

(Type => Activity,

Input_Event => T2_out,

Output_Event => T3_out,

Activity_Operation => T3,

Activity_Server => T3)));

108 Chapter C

Uppaal

seen1

seen2

x<=P && y<=P

x<=P && y<=J

m!=0
out?

n--, m:=(m<0?m:m-1) m==0
out?
m:=-1, n--

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?
m:=-1, n--

m==-1 && z>=D && pending>0
pending--, req_T1++, c_req_T1:=0, m:=n, n++, w:=0,
snd++, z:=0

m==-1 && z>=D && pending>0
pending--, req_T1++, c_req_T1:=0, m:=n, n++, w:=0,
snd++, z:=0

x==P
pending++,
x:=0

z>=D && pending>0
pending--, req_T1++, c_req_T1:=0, n++,
snd++, z:=0

y==P && snd>0
snd--, y:=0

y==J && snd>0
snd--, y:=0

pending++

x==P
pending++,
x:=0

z>=D && pending>0
pending--, req_T1++, c_req_T1:=0, n++,
snd++, z:=0

idleT1

x<=WCET_T1

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--, c_req_T1:=0, req_T2++, c_req_T2:=0

idleT2

x<=WCET_T2

req_T2>0

hurry!

x:=0

x==WCET_T2
req_T2--, c_req_T2:=0, req_T3++, c_req_T3:=0

idleT3

x<=WCET_T3

req_T3>0

hurry!

x:=0

x==WCET_T3
out!

req_T3--, c_req_T3:=0

hurry?

Case studies - System models 109

PESIMDES

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generator

input_periodic_with_burst_uwj input_generator

("I1",sc_time(10,SC_MS),sc_time(50,SC_MS),sc_time(1,SC_MS),"input_trace_1.tra");

/* const double change_state_probabilities[3][3] = {{0.9, 0.05, 0.05}, {0.05, 0.9, 0.05}, {0.05, 0.05, 0.9}};

input_periodic_with_burst_configurable_distribution input_generator

("I1",sc_time(10,SC_MS),sc_time(50,SC_MS),sc_time(1,SC_MS),change_state_probabilities,

’u’,"input_trace_1_b.tra"); */

// Tasks

task t1("T1");

task t2("T2");

task t3("T3");

// Resources

resource_n_tasks_fixed_priority_preemptive cpu_1("CPU1",1);

resource_n_tasks_fixed_priority_preemptive cpu_2("CPU2",1);

resource_n_tasks_fixed_priority_preemptive cpu_3("CPU3",1);

// Event sinks

output_display display("O1");

// Task mapping

cpu_1.assign_task(t1,0,sc_time(1,SC_MS),1);

cpu_2.assign_task(t2,0,sc_time(4,SC_MS),1);

cpu_3.assign_task(t3,0,sc_time(8,SC_MS),1);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2(MAXBUFFER);

my_sc_fifo<event_token> buffer_T3(MAXBUFFER);

// Dummy buffer for event sink

sc_fifo<event_token> dummy_buffer_display(1);

// Port binding

input_generator.out(buffer_T1);

t1.in[0](buffer_T1);

t1.out[0](buffer_T2);

t2.in[0](buffer_T2);

t2.out[0](buffer_T3);

t3.in[0](buffer_T3);

t3.out[0](dummy_buffer_display);

display.in(dummy_buffer_display);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay: "

<< sc_time_output(display.getmaxlatency("I1")) <<

" (event no. " << display.getseqnoofmaxlatency("I1") << ")\n";

cout << "Max. observed Backlog T3: " << buffer_T3.getmaxbacklog() << "\n";

return 0;

}

110 Chapter C

SymTA/S

XML

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis

xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="yes"/>

<EDF name="CPU2" preemptive="yes"/>

<FP name="CPU3" preemptive="yes"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="10" unit="ms" />

<jitter value="50" unit="ms" />

<min_interarr value="1" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

<task name="T3" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T1" />

<link src="T1" dest="T2" />

<link src="T2" dest="T3" />

<link src="T3" dest="O1" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="1" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU2">

<wcet value="4" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T3" resource="CPU3">

<wcet value="8" unit="ms" />

<priority> 1 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I1" dest="O1" />

<backlog task="T3" />

</observe>

</performance_analysis>

Case studies - System models 111

C.2 Models case study 2: Cyclic dependencies

MPA-RTC

% Author(s): E. Wandeler

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

%%%

% Setup of system parameters

%%%

% Event stream

% ===

p = 10; j = 50; d = 0;

% Processor speeds

% ===

cpu1 = 1; cpu2 = 1;

% Task execution demands

% ===

wced1 = 1; wced2 = 4; wced3 = 4;

%%%

% Construct input curves

%%%

% Construct the input arrival curves

% ===

aui1 = pjdu(p,j,d); ali1 = pjdl(p,j,d);

% Construct the service curves

% ===

bui1 = fs(cpu1); bli1 = fs(cpu1); bui2 = fs(cpu2); bli2 = fs(cpu2);

%%%

% Analysis of scenario 1

%%%

tic;

% Compute the arrival and service curves for the stream

% ===

[auo1 alo1 buo1 blo1] = gpc(aui1, ali1, bui1, bli1, wced1);

[auo2 alo2 buo2 blo2] = gpc(auo1, alo1, bui2, bli2, wced2);

[auo3 alo3 buo3 blo3] = gpc(auo2, alo2, buo1, blo1, wced3);

% Compute the delay using both methods: addition and convolution

% ===

delay_conv = del(aui1,bli1,wced1,bli2,wced2,blo1,wced3);

delay_add = del(aui1,bli1,wced1) + del(auo1,bli2,wced2) + del(auo2,blo1,wced3);

delay = min(delay_conv, delay_add);

tTot = toc;

% Display the results

% ===

disp([’Scenarion 1: Priority(T3) < Priority(T1)’])

disp([’==’])

disp([’Delay : ’ num2str(delay)]) disp([’Analysis time : ’

num2str(tTot) ’s’]) disp(’ ’)

%%%

% Analysis of scenario 2

%%%

% This analysis requires a fixed-point calculation

tic;

% Compute the arrival and service curves for the stream

% ===

% Set start values for fixed-point calculation

buo3 = bui1; blo3 = bli1;

buo3last = +buo3; % unary plus makes a clone!

blo3last = +blo3;

% Iterate up to 20 times

for i = [1:20]

[auo1 alo1 buo1 blo1] = gpc(aui1, ali1, buo3, blo3, wced1);

[auo2 alo2 buo2 blo2] = gpc(auo1, alo1, bui2, bli2, wced2);

[auo3 alo3 buo3 blo3] = gpc(auo2, alo2, bui1, bli1, wced3);

if ((buo3 == buo3last) & (blo3 == blo3last))

break

end

buo3last = +buo3; % unary plus makes a clone!

blo3last = +blo3;

end

112 Chapter C

% Compute the delay using both methods: addition and convolution

% ===

delay_conv = del(aui1,blo3,wced1,bli2,wced2,bli1,wced3);

delay_add = del(aui1,blo3,wced1) + del(auo1,bli2,wced2) + del(auo2,bli1,wced3);

delay = min(delay_conv, delay_add);

tTot = toc;

% Display the results

% ===

disp([’Scenarion 2: Priority(T3) > Priority(T1) (fixed-point

calculation)’])

disp([’==’])

disp([’Delay : ’ num2str(delay)]) disp([’Analysis time : ’

num2str(tTot) ’s’]) if (((buo3 == buo3last) & (blo3 == blo3last)))

disp([’Fixed point reached after ’ num2str(i) ’ iterations.’])

else

disp([’Fixed point NOT reached after ’ num2str(i) ’ iterations.’])

end disp(’ ’)

MAST

Model (

Model_Name => cyclic_dependencies,

Model_Date => 2005-12-13);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1);

Processing_Resource (

Type => Regular_Processor,

Name => CPU2);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduler (

Type => Primary_Scheduler,

Name => CPU2,

Host => CPU2,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

-- The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU2);

Scheduling_Server (

Type => Regular,

Name => T3,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

-- The_Priority => 2,

Preassigned => Yes),

Scheduler => CPU1);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 1,

Worst_Case_Execution_Time => 1);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 4,

Worst_Case_Execution_Time => 4);

Operation (

Type => Simple,

Name => T3,

Best_Case_Execution_Time => 4,

Worst_Case_Execution_Time => 4);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in,

Period => 10,

Max_Jitter => 47.5)),

Internal_Events => (

(Type => regular,

name => T1_out),

(Type => regular,

name => T2_out),

(Type => regular,

name => T3_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => in))),

Event_Handlers => (

(Type => Activity,

Input_Event => in,

Output_Event => T1_out,

Activity_Operation => T1,

Activity_Server => T1),

(Type => Activity,

Input_Event => T1_out,

Output_Event => T2_out,

Activity_Operation => T2,

Activity_Server => T2),

(Type => Activity,

Input_Event => T2_out,

Output_Event => T3_out,

Activity_Operation => T3,

Activity_Server => T3)));

Case studies - System models 113

Uppaal

seen1

seen2

x<=P && y<=P

x<=P && y<=J

m!=0
out?

n--, m:=(m<0?m:m-1) m==0
out?
m:=-1, n--

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?
m:=-1, n--

m==-1 && pending>0
pending--, req_T1++, c_req_T1:=0, m:=n, n++, w:=0,
snd++

m==-1 && pending>0
pending--, req_T1++, c_req_T1:=0, m:=n, n++, w:=0,
snd++

x==P
pending++,
x:=0

pending>0
pending--, req_T1++, c_req_T1:=0, n++,
snd++

y==P && snd>0
snd--, y:=0

y==J && snd>0
snd--, y:=0

pending++

x==P
pending++,
x:=0

pending>0
pending--, req_T1++, c_req_T1:=0, n++,
snd++

idleT3

x<=D

T1

x<=WCET_T1pre_T1 y<=WCET_T1

x==D
out!

D:=0, req_T3--, c_req_T3:=0, x:=0
x<D
y:=0

req_T1>0
hurry!

req_T3>0 and req_T1==0

hurry!

x:=0, D:=WCET_T3

x==D
out!

D:=0,
req_T3--, c_req_T3:=0

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--, c_req_T1:=0,
req_T2++, c_req_T2:=0

y==WCET_T1
req_T1--, c_req_T1:=0,
req_T2++, c_req_T2:=0,
D+=WCET_T1

idleT2

x<=WCET_T2

req_T2>0

hurry!

x:=0

x==WCET_T2
req_T2--, c_req_T2:=0, req_T3++, c_req_T3:=0

hurry?

114 Chapter C

PESIMDES

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generator

input_periodic_with_burst_uwj input_generator

("I1",sc_time(10,SC_MS),sc_time(50,SC_MS),sc_time(0,SC_MS),"input_trace_1.tra");

/* const double change_state_probabilities[3][3] = {{0.9, 0.05, 0.05}, {0.05, 0.9, 0.05}, {0.05, 0.05, 0.9}};

input_periodic_with_burst_configurable_distribution input_generator

("I1",sc_time(10,SC_MS),sc_time(50,SC_MS),sc_time(0,SC_MS),change_state_probabilities,

’u’,"input_trace_1_b.tra"); */

// Tasks

task t1("T1");

task t2("T2");

task t3("T3");

// Resources

resource_n_tasks_fixed_priority_preemptive cpu_1("CPU1",2);

resource_n_tasks_fixed_priority_preemptive cpu_2("CPU2",1);

// Event sinks

output_display display("O1");

// Task mapping

cpu_1.assign_task(t1,0,sc_time(1,SC_MS),1);

cpu_2.assign_task(t2,0,sc_time(4,SC_MS),1);

cpu_1.assign_task(t3,0,sc_time(4,SC_MS),2);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2(MAXBUFFER);

my_sc_fifo<event_token> buffer_T3(MAXBUFFER);

// Dummy buffer for event sink

sc_fifo<event_token> dummy_buffer_display(1);

// Port binding

input_generator.out(buffer_T1);

t1.in[0](buffer_T1);

t1.out[0](buffer_T2);

t2.in[0](buffer_T2);

t2.out[0](buffer_T3);

t3.in[0](buffer_T3);

t3.out[0](dummy_buffer_display);

display.in(dummy_buffer_display);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay: "

<< sc_time_output(display.getmaxlatency("I1")) <<

" (event no. " << display.getseqnoofmaxlatency("I1") << ")\n";

return 0;

}

Case studies - System models 115

SymTA/S

XML

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="yes"/>

<FP name="CPU2" preemptive="yes"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="10" unit="ms" />

<jitter value="50" unit="ms" />

<min_interarr value="0" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

<task name="T3" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T1" />

<link src="T1" dest="T2" />

<link src="T2" dest="T3" />

<link src="T3" dest="O1" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="1" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU2">

<wcet value="4" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T3" resource="CPU1">

<wcet value="4" unit="ms" />

<priority> 2 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I1" dest="O1" />

</observe>

</performance_analysis>

116 Chapter C

C.3 Models case study 3: Variable Feedback

MPA-RTC

% Author(s): E. Wandeler

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

%%%

% Setup of system parameters

%%%

% Event stream

% ===

% Stream 0:

p_S0 = 100; j_S0 = 200; d_S0 = 0;

% Stream 1:

p_S1 = 4;

% Processor speeds

% ===

% CPU0

b_CPU0 = 1;

% CPU1

b_CPU1 = 1;

% Task execution demands

% ===

ed_T0 = 20; ed_T1 = 20; ed_T2 = 15; ed_T3 = 3;

%%%

% Construct input curves

%%%

tic;

% Construct the input arrival curves

% ===

auo0_S0 = pjdu(p_S0,j_S0,d_S0);

alo0_S0 = pjdl(p_S0,j_S0,d_S0);

auo0_S1 = pjdu(p_S1);

alo0_S1 = pjdl(p_S1);

% Construct the service curves

% ===

buo0_CPU0 = fs(b_CPU0);

blo0_CPU0 = fs(b_CPU0);

buo0_CPU1 = fs(b_CPU1);

blo0_CPU1 = fs(b_CPU1);

%%%

% Analysis.

%%%

% Compute the arrival and service curves through a Greedy Processing

% Components for Stream 1.

% ===

[auo1_S1 alo1_S1 buo1_CPU1 blo1_CPU1] = gpc(auo0_S1, alo0_S1,

buo0_CPU1, blo0_CPU1, ed_T3);

% Compute the arrival and service curves through a chain of Greedy

% Processing Components for Stream 0.

% ===

[auo1_S0 alo1_S0 buo1_CPU0 blo1_CPU0] = gpc(auo0_S0, alo0_S0,

buo0_CPU0, blo0_CPU0, ed_T0);

[auo2_S0 alo2_S0 buo2_CPU1 blo2_CPU1] = gpc(auo1_S0, alo1_S0, buo1_CPU1,

blo1_CPU1, ed_T1);

[auo3_S0 alo3_S0 buo2_CPU0 blo2_CPU0] = gpc(auo2_S0, alo2_S0, buo1_CPU0,

blo1_CPU0, ed_T2);

% Compute the total delay through service curve convolution and by addition.

% ===

d_conv = del(auo0_S0,blo0_CPU0,ed_T0,blo1_CPU1,ed_T1,blo1_CPU0,ed_T2);

d_add = del(auo0_S0,blo0_CPU0,ed_T0) ...

+ del(auo1_S0,blo1_CPU1,ed_T1) ...

+ del(auo2_S0,blo1_CPU0,ed_T2);

d = min(d_conv,d_add);

% Compute the backlog buffer size at T2.

% ===

b = buf(auo2_S0,blo1_CPU0,ed_T2);

tTot = toc;

% Display the results.

% ===

Case studies - System models 117

disp([’End-To-End Delay of Stream 0 : ’ num2str(d)]) disp([’Backlog

Buffer at T2 : ’ num2str(b)]) disp([’Analysis Time : ’

num2str(tTot) ’s’])

MAST

Model (

Model_Name => p5,

Model_Date => 2006-01-18);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1);

Processing_Resource (

Type => Regular_Processor,

Name => CPU2);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduler (

Type => Primary_Scheduler,

Name => CPU2,

Host => CPU2,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T3,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

Preassigned => Yes),

Scheduler => CPU2);

Scheduling_Server (

Type => Regular,

Name => T4,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU2);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 20,

Worst_Case_Execution_Time => 20);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 15,

Worst_Case_Execution_Time => 15);

Operation (

Type => Simple,

Name => T3,

Best_Case_Execution_Time => 3,

Worst_Case_Execution_Time => 3);

Operation (

Type => Simple,

Name => T4,

Best_Case_Execution_Time => 20,

Worst_Case_Execution_Time => 20);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in1,

Period => 30)),

Internal_Events => (

(Type => regular,

name => T3_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => in1))),

Event_Handlers => (

(Type => Activity,

Input_Event => in1,

Output_Event => T3_out,

Activity_Operation => T3,

Activity_Server => T3)));

Transaction (

Type => Regular,

Name => transact2,

External_Events => (

(Type => Periodic,

Name => in2,

Period => 100,

Max_Jitter => 200)),

Internal_Events => (

(Type => regular,

name => T1_out),

(Type => regular,

name => T4_out),

(Type => regular,

name => T2_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 10000,

Referenced_Event => in2))),

Event_Handlers => (

(Type => Activity,

Input_Event => in2,

Output_Event => T1_out,

Activity_Operation => T1,

Activity_Server => T1),

(Type => Activity,

Input_Event => T1_out,

Output_Event => T4_out,

Activity_Operation => T4,

Activity_Server => T4),

(Type => Activity,

Input_Event => T4_out,

Output_Event => T2_out,

Activity_Operation => T2,

Activity_Server => T2)));

118 Chapter C

Uppaal

x<=P

seen1

seen2

x<=P && y<=P

x<=P && y<=J

x:=0, y:=0

m!=0
out?

n--, m:=(m<0?m:m-1) m==0
out?
m:=-1, n--

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?
m:=-1, n--

m==-1 && pending>0
pending--, req_T1++, m:=n, n++, w:=0,
snd++

m==-1 && pending>0
pending--, req_T1++, m:=n, n++, w:=0,
snd++

x==P
pending++,
x:=0

pending>0
pending--, req_T1++, n++,
snd++

y==P && snd>0
snd--, y:=0

y==J && snd>0
snd--, y:=0

pending++

x==P
pending++,
x:=0

pending>0
pending--, req_T1++, n++,
snd++

L1

x<=P

L0

x<=P

x>=P
req_T3++, x:=0

req_T3++, x:=0

idleT2

x<=D

T1

x<=WCET_T1pre_T1 y<=WCET_T1

x==D
out!

D:=0, req_T2--, x:=0
x<D
y:=0

req_T1>0
hurry!

req_T2>0 and req_T1==0

hurry!

x:=0, D:=WCET_T2

x==D
out!

D:=0,
req_T2--

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--,
req_T4++

y==WCET_T1
req_T1--,
req_T4++,
D+=WCET_T1

idleT4

x<=D

T3

x<=WCET_T3pre_T3 y<=WCET_T3

x==D
D:=0, req_T4--, req_T2++, x:=0

x<D
y:=0

req_T3>0
hurry!

req_T4>0 and req_T3==0

hurry!

x:=0, D:=WCET_T4

x==D
D:=0,
req_T4--, req_T2++

req_T3>0

hurry!

x:=0

x==WCET_T3
req_T3--y==WCET_T3

req_T3--,
D+=WCET_T3

hurry?

Case studies - System models 119

PESIMDES

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generators

input_periodic input_generator_1("I1",sc_time(4,SC_MS),"input_trace_1.tra");

input_periodic_with_burst_uwj input_generator_2

("I2",sc_time(100,SC_MS),sc_time(200,SC_MS),sc_time(0,SC_MS),"input_trace_2.tra");

/* const double change_state_probabilities[3][3] = {{0.9, 0.05, 0.05}, {0.05, 0.9, 0.05}, {0.05, 0.05, 0.9}};

input_periodic_with_burst_configurable_distribution input_generator_2

("I2",sc_time(100,SC_MS),sc_time(200,SC_MS),sc_time(0,SC_MS),change_state_probabilities,

’u’,"input_trace_2_b.tra"); */

// Tasks

task t1("T1");

task t2("T2");

task t3("T3");

task t4("T4");

// Resources

resource_n_tasks_fixed_priority_preemptive cpu_1("CPU1",2);

resource_n_tasks_fixed_priority_preemptive cpu_2("CPU2",2);

// Event sinks

output_display display_1("O1");

output_display display_2("O2");

// Task mapping

cpu_1.assign_task(t1,0,sc_time(20,SC_MS),1);

cpu_1.assign_task(t2,1,sc_time(15,SC_MS),2);

cpu_2.assign_task(t3,0,sc_time(3,SC_MS),1);

cpu_2.assign_task(t4,1,sc_time(20,SC_MS),2);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2(MAXBUFFER);

my_sc_fifo<event_token> buffer_T3(MAXBUFFER);

my_sc_fifo<event_token> buffer_T4(MAXBUFFER);

// Dummy buffers for event sinks

sc_fifo<event_token> dummy_buffer_display_1(1);

sc_fifo<event_token> dummy_buffer_display_2(1);

// Port binding

input_generator_1.out(buffer_T3);

t3.in[0](buffer_T3);

t3.out[0](dummy_buffer_display_1);

display_1.in(dummy_buffer_display_1);

input_generator_2.out(buffer_T1);

t1.in[0](buffer_T1);

t1.out[0](buffer_T4);

t4.in[0](buffer_T4);

t4.out[0](buffer_T2);

t2.in[0](buffer_T2);

t2.out[0](dummy_buffer_display_2);

display_2.in(dummy_buffer_display_2);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay I2-O2: "

<< sc_time_output(display_2.getmaxlatency("I2")) <<

" (event no. " << display_2.getseqnoofmaxlatency("I2") << ")\n";

cout << "Max. observed Backlog T2: " << buffer_T2.getmaxbacklog() << "\n";

return 0;

}

120 Chapter C

SymTA/S

XML

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="yes"/>

<FP name="CPU2" preemptive="yes"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="4" unit="ms" />

</PJD>

<PJD name="I2">

<period value="100" unit="ms" />

<jitter value="200" unit="ms" />

<min_interarr value="0" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

<task name="T3" />

<task name="T4" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T3" />

<link src="T3" dest="O1" />

</task_graph>

<task_graph>

<link src="I2" dest="T1" />

<link src="T1" dest="T4" />

<link src="T4" dest="T2" />

<link src="T2" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="20" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU1">

<wcet value="15" unit="ms" />

<priority> 2 </priority>

</map>

<map task="T3" resource="CPU2">

<wcet value="3" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T4" resource="CPU2">

<wcet value="20" unit="ms" />

<priority> 2 </priority>

</map>

</binding>

</system>

<observe>

<backlog task="T2" />

<latency src="I2" dest="O2" />

</observe>

</performance_analysis>

Case studies - System models 121

C.4 Models case study 4: AND/OR task activation

MPA-RTC

% Author(s): E. Wandeler, S. Perathoner

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

%%%

% Setup of system parameters for OR-activation

%%%

% Event streams

% ===

% Stream 0:

p_S0 = 100; j_S0 = 20;

% Stream 1:

p_S1 = 150; j_S1 = 60;

% Processor speeds

% ===

% CPU0

b_CPU0 = 1;

% Task execution demands

% ===

% T0

ed_T0 = 40;

%%%

% Construct input curves

%%%

auo_S0 = pjdu(p_S0,j_S0);

alo_S0 = pjdl(p_S0,j_S0);

auo_S1 = pjdu(p_S1,j_S1);

alo_S1 = pjdl(p_S1,j_S1);

buo_CPU0 = fs(b_CPU0);

blo_CPU0 = fs(b_CPU0);

%%%

% Analysis.

%%%

tic;

% Compute the OR-activation

% ===

[auo_OR alo_OR] = or(auo_S0,alo_S0,auo_S1,alo_S1);

% Compute the output behavior of T0

% ===

[auoT0 aloT0 buoT0 bloT0] = gpc(auo_OR, alo_OR, buo_CPU0, blo_CPU0, ed_T0);

% Compute the delay and backlog on T0

% ===

d_OR = del(auo_OR,blo_CPU0,ed_T0);

b_OR = buf(auo_OR,blo_CPU0,ed_T0);

tTot = toc;

% Display the results

% ===

disp(’===================== OR-activation ===============================’)

disp([’Delay : ’ num2str(d_OR)]) disp([’Backlog :

’ num2str(b_OR)]) disp([’Analysis time : ’ num2str(tTot) ’s’])

%%%

% Setup of system parameters for AND-activation

%%%

% Event streams

% ===

% Stream 2:

p_S2 = 100; j_S2 = 10;

% Stream 3:

p_S3 = 100; j_S3 = 190; d_S3 = 20;

% Processor speeds

% ===

% CPU1

b_CPU1 = 1;

% Task execution demands

122 Chapter C

% ===

% T1

ed_T1 = 40;

%%%

% Construct input curves

%%%

auo_S2 = pjdu(p_S2,j_S2);

alo_S2 = pjdl(p_S2,j_S2);

auo_S3 = pjdu(p_S3,j_S3,d_S3);

alo_S3 = pjdl(p_S3,j_S3,d_S3); buo_CPU1 = fs(b_CPU1); blo_CPU1 = fs(b_CPU1);

%%%

% Analysis.

%%%

tic;

% Compute the AND-activation

% ===

[auo_AND alo_AND] = and(auo_S2,alo_S2,auo_S3,alo_S3);

% Compute the output behavior of T1

% ===

[auoT1 aloT1 buoT1 bloT1] = gpc(auo_AND, alo_AND, buo_CPU1, blo_CPU1, ed_T1);

% Compute the delay and backlog on T1

% ===

d_AND = del(auo_AND,blo_CPU1,ed_T1);

b_AND = buf(auo_AND,blo_CPU1,ed_T1);

% Consider also the AND-activation buffers

% ===

d_AND = d_AND + max(h(auo_S3,alo_S2),h(auo_S2,alo_S3));

b_AND = 2 * b_AND + max(v(auo_S3,alo_S2),v(auo_S2,alo_S3));

tTot = toc;

% Display the results

% ===

disp(’===================== AND-activation ===============================’)

disp([’Delay : ’ num2str(d_AND)]) disp([’Total buffersize :

’ num2str(b_AND)]) disp([’Analysis time : ’ num2str(tTot) ’s’])

MAST (OR-activation)

Model (

Model_Name => p3_OR,

Model_Date => 2006-01-16);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 60,

Worst_Case_Execution_Time => 60);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in_1,

Period => 100,

Max_Jitter => 20)

),

Internal_Events => (

(Type => regular,

name => T1_out_1,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 10000,

Referenced_Event => in_1)

)

),

Event_Handlers => (

(Type => Activity,

Input_Event => in_1,

Output_Event => T1_out_1,

Activity_Operation => T1,

Activity_Server => T1

)

)

);

Transaction (

Type => Regular,

Name => transact2,

External_Events => (

(Type => Periodic,

Name => in_2,

Period => 150,

Max_Jitter => 60)

),

Internal_Events => (

(Type => regular,

name => T1_out_2,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 10000,

Case studies - System models 123

Referenced_Event => in_2)

)

),

Event_Handlers => (

(Type => Activity,

Input_Event => in_2,

Output_Event => T1_out_2,

Activity_Operation => T1,

Activity_Server => T1

)

)

);

Uppaal (AND-activation)

L1

x<=J

L2

x<=P

seen1 seen0

L0

x<=P

m!=0
out1?

n--, m:=(m<0?m:m-1)

req_1_T1++,
n++

x>=P
x:=0

m==-1
req_1_T1++,
m:=n, n++, y:=0

m==0
out1?

m:=-1, n--
m==0
out1?

m:=-1, n--

m!=0
out1?

n--, m:=(m<0?m:m-1)

x:=0

x<=P

seen1

seen2

x<=P && y<=P

x<=P && y<=J

x:=0, y:=0, z:=0

m!=0
out2?

n--, m:=(m<0?m:m-1) m==0
out2?
m:=-1, n--

m!=0
out2?

n--, m:=(m<0?m:m-1)

m==0
out2?
m:=-1, n--

m==-1 && z>=D && pending>0
pending--, req_2_T1++, m:=n, n++, w:=0,
snd++, z:=0

m==-1 && z>=D && pending>0
pending--, req_2_T1++, m:=n, n++, w:=0,
snd++, z:=0

x==P
pending++,
x:=0

z>=D && pending>0
pending--, req_2_T1++, n++,
snd++, z:=0

y==P && snd>0
snd--, y:=0

y==J && snd>0
snd--, y:=0

pending++

x==P
pending++,
x:=0

z>=D && pending>0
pending--, req_2_T1++, n++,
snd++, z:=0

idleT1

x<=WCET_T1

out2!
req_1_T1--, req_2_T1--

x==WCET_T1
out1!

req_1_T1>0 && req_2_T1>0
hurry!
x:=0

hurry?

124 Chapter C

Uppaal (OR-activation)

L1

x<=J

L2

x<=P

seen1 seen0

L0

x<=P

m!=0
out1?

n--, m:=(m<0?m:m-1)

write1!
req_T1++,
n++

x>=P
x:=0

m==-1
write1!

req_T1++,
m:=n, n++, y:=0

m==0
out1?

m:=-1, n--
m==0
out1?

m:=-1, n--

m!=0
out1?

n--, m:=(m<0?m:m-1)

x:=0

L1

x<=J

L2

x<=P

seen1 seen0

L0

x<=P

m!=0
out2?

n--, m:=(m<0?m:m-1)

write2!
req_T1++,
n++

x>=P
x:=0

m==-1
write2!

req_T1++,
m:=n, n++, y:=0

m==0
out2?

m:=-1, n--
m==0
out2?

m:=-1, n--

m!=0
out2?

n--, m:=(m<0?m:m-1)

x:=0

BUFFER_too_small

_2
_1

_22_12_21_11

_222_122_212_112_221_121_211_111

write2?
write1?write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?

write1?

write2?
write1?

read2?

read1?

read1?

read2?

read2?
read1?

read2?

read1?
read2?

read2?

write2?
write2?write1?

write2?write1?
write2?

write1?

write2?

write1?
write2?

read2?

write2?

read1?
write1?

read1?

write1?

read1?

write1?

x<=WCET_T1

x<=WCET_T1

idle

x==WCET_T1
out2!

req_T1--

x==WCET_T1
out1!

req_T1--

read2!

read1!
req_T1>0

hurry!
x:=0

Case studies - System models 125

PESIMDES

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generators

const double change_state_probabilities[3][3] = {{0.9, 0.05, 0.05}, {0.05, 0.9, 0.05}, {0.05, 0.05, 0.9}};

input_periodic_with_jitter_configurable_distribution input_generator_1

("I1",sc_time(100,SC_MS),sc_time(20,SC_MS),change_state_probabilities,’u’,"input_trace_1.tra");

input_periodic_with_jitter_configurable_distribution input_generator_2

("I2",sc_time(150,SC_MS),sc_time(60,SC_MS),change_state_probabilities,’u’,"input_trace_2.tra");

input_periodic_with_jitter_configurable_distribution input_generator_3

("I3",sc_time(100,SC_MS),sc_time(10,SC_MS),change_state_probabilities,’u’,"input_trace_3.tra");

input_periodic_with_burst_configurable_distribution input_generator_4

("I4",sc_time(100,SC_MS),sc_time(190,SC_MS),sc_time(20,SC_MS),change_state_probabilities,

’u’,"input_trace_4.tra");

// Tasks

task t1("T1",2,"OR",1);

task t2("T2",2,"AND",1);

// Resources

resource_n_tasks_fixed_priority_preemptive cpu_1("CPU1",1);

resource_n_tasks_fixed_priority_preemptive cpu_2("CPU2",1);

// Event sinks

output_display display_1("O1");

output_display display_2("O2");

// Task mapping

cpu_1.assign_task(t1,0,sc_time(40,SC_MS),1);

cpu_2.assign_task(t2,0,sc_time(40,SC_MS),1);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1_1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T1_2(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2_1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2_2(MAXBUFFER);

// Dummy buffers for event sinks

sc_fifo<event_token> dummy_buffer_display_1(1);

sc_fifo<event_token> dummy_buffer_display_2(1);

// Port binding

input_generator_1.out(buffer_T1_1);

t1.in[0](buffer_T1_1);

input_generator_2.out(buffer_T1_2);

t1.in[1](buffer_T1_2);

t1.out[0](dummy_buffer_display_1);

display_1.in(dummy_buffer_display_1);

input_generator_3.out(buffer_T2_1);

t2.in[0](buffer_T2_1);

input_generator_4.out(buffer_T2_2);

t2.in[1](buffer_T2_2);

t2.out[0](dummy_buffer_display_2);

display_2.in(dummy_buffer_display_2);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay I1-O1: "

<< sc_time_output(display_1.getmaxlatency("I1")) <<

" (event no. " << display_1.getseqn1oofmaxlatency("I1") << ")\n";

cout << "Max. observed Backlog T1_1: " << buffer_T1_1.getmaxbacklog() << "\n";

cout << "Max. observed Backlog T1_2: " << buffer_T1_2.getmaxbacklog() << "\n";

cout << "\n Max. observed End-to-End Delay I3-O2: "

<< sc_time_output(display_2.getmaxlatency("I3")) <<

" (event no. " << display_2.getseqn1oofmaxlatency("I3") << ")\n";

cout << "\n Max. observed End-to-End Delay I4-O2: "

<< sc_time_output(display_2.getmaxlatency("I4")) <<

" (event no. " << display_2.getseqn1oofmaxlatency("I4") << ")\n";

cout << "Max. observed Backlog T2_1: " << buffer_T2_1.getmaxbacklog() << "\n";

cout << "Max. observed Backlog T2_2: " << buffer_T2_2.getmaxbacklog() << "\n";

return 0;

}

126 Chapter C

SymTA/S

XML

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="no"/>

<FP name="CPU2" preemptive="no"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="100" unit="ms" />

<jitter value="20" unit="ms" />

</PJD>

<PJD name="I2">

<period value="150" unit="ms" />

<jitter value="60" unit="ms" />

</PJD>

<PJD name="I3">

<period value="100" unit="ms" />

<jitter value="10" unit="ms" />

</PJD>

<PJD name="I4">

<period value="100" unit="ms" />

<jitter value="190" unit="ms" />

<min_interarr value="20" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" input_no="2"

activation_type="OR" />

<task name="T2" input_no="2"

activation_type="AND" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1"

dest="T1" dest_index="0" />

<link src="I2" dest="T1"

dest_index="1" />

<link src="T1" dest="O1" />

</task_graph>

<task_graph>

<link src="I3"

dest="T2" dest_index="0" />

<link src="I4"

dest="T2" dest_index="1" />

<link src="T2" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="40" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU2">

<wcet value="40" unit="ms" />

<priority> 1 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I1" dest="O1" />

<backlog task="T1" index="0" />

Case studies - System models 127

<backlog task="T1" index="1" />

<latency src="I3" dest="O2" />

<latency src="I4" dest="O2" />

<backlog task="T2" index="0" />

<backlog task="T2" index="1" />

</observe>

</performance_analysis>

128 Chapter C

C.5 Models case study 5: Intra-context information

MPA-RTC
% Author(s): E. Wandeler

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

%%%

% Setup of system parameters

%%%

% Event streams

% ===

% Stream S0:

% Pattern: BBPBBI => worst-case pattern is IBBPBB,

p_S0 = 200;

% Stream S1:

p_S1 = 1000;

% Processor speeds

% ===

cpu0 = 1;

% Task execution demands

% ===

ed_T0_I = 80;

ed_T0_P = 56;

ed_T0_B = 44;

ed_T1 = 200;

%%%

% Construct input curves

%%%

tic;

% Construct the input arrival curves

% ===

% This curve is a resource-based arrival curve, that can be obtained by

% transformation of an event-based arrival curve with a workload curve.

aui_S0 = curve([[0 ed_T0_I 0];...

[p_S0 ed_T0_I+ed_T0_B 0];...

[2*p_S0 ed_T0_I+ed_T0_B+ed_T0_B 0];...

[3*p_S0 ed_T0_I+ed_T0_B+ed_T0_B+ed_T0_P 0];...

[4*p_S0 ed_T0_I+ed_T0_B+ed_T0_B+ed_T0_P+ed_T0_B 0];...

[5*p_S0 ed_T0_I+ed_T0_B+ed_T0_B+ed_T0_P+ed_T0_B+ed_T0_B 0]], ...

0, 6*p_S0, ed_T0_I+ed_T0_B+ed_T0_B+ed_T0_P+ed_T0_B+ed_T0_B);

aui_S1 = pjdu(p_S1);

% Construct the service curve

% ===

bli_CPU0 = fs(cpu0);

%%%

% Analysis.

%%%

% To answer the design question, we do not need to analyze full GPCs.

% Compute the lower servie curve after processing T0

% ===

blo1_CPU0 = maxconv((bli_CPU0 - aui_S0), 0);

% Compute the delay of T1

% ===

d_T1 = del(aui_S1,blo1_CPU0,ed_T1);

tTot = toc;

% Display the results

% ===

disp([’Delay of T1 : ’ num2str(d_T1)])

disp([’Analysis time : ’ num2str(tTot) ’s’])

disp(’ ’)

Case studies - System models 129

MAST (context-blind)

Model (

Model_Name => Intra-context,

Model_Date => 2006-01-19);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 5,

Worst_Case_Execution_Time => 80);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 200,

Worst_Case_Execution_Time => 200);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in,

Period => 200)),

Internal_Events => (

(Type => regular,

name => T1_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 10000,

Referenced_Event => in))),

Event_Handlers => (

(Type => Activity,

Input_Event => in,

Output_Event => T1_out,

Activity_Operation => T1,

Activity_Server => T1)));

Transaction (

Type => Regular,

Name => transact2,

External_Events => (

(Type => Periodic,

Name => in2,

Period => 1000)),

Internal_Events => (

(Type => regular,

name => T2_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 50000,

Referenced_Event => in2))),

Event_Handlers => (

(Type => Activity,

Input_Event => in2,

Output_Event => T2_out,

Activity_Operation => T2,

Activity_Server => T2)));

130 Chapter C

Uppaal

x<=P x<=P

x<=P

x<=Px<=P

x<=P

x<=P

x>=P
req_T1++, x:=0

x>=P

req_T1++, mode:=0, x:=0

x>=P

req_T1++, mode:=1, x:=0

x>=P

req_T1++, mode:=2, x:=0

x>=P

req_T1++, x:=0

x>=P

req_T1++, mode:=1, x:=0req_T1++, mode:=0, x:=0

L1
x<=P

seenL0

x<=P

x>=P
req_T2++, n++, x:=0

x>=P && m==-1
req_T2++, m:=n, n++,
x:=0, y:=0

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?

m:=-1, n--

req_T2++, n++, x:=0

idle
T2 x<=D

T1

x<=Wpre_T1 y<=W

req_T1>0 && mode==2
hurry!
W:=WCET_T1_2

req_T1>0 && mode==1
hurry!

W:=WCET_T1_1

req_T1>0 && mode==0
hurry!

W:=WCET_T1_0

req_T1>0 && mode==2
hurry!

x:=0, W:=WCET_T1_2

req_T1>0 && mode==1
hurry!

x:=0, W:=WCET_T1_1

x==D
out!

D:=0, req_T2--, x:=0

x<D
y:=0

req_T2>0 and req_T1==0
hurry!

x:=0, D:=WCET_T2

x==D
out!
D:=0,
req_T2--

req_T1>0 && mode==0
hurry!

x:=0, W:=WCET_T1_0

x==W
req_T1--

y==W
req_T1--,
D+=W

hurry?

Case studies - System models 131

PESIMDES (context-blind)

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generators

input_periodic input_generator_1("I1",sc_time(200,SC_MS),"input_trace_1.tra");

input_periodic input_generator_2("I2",sc_time(1000,SC_MS),"input_trace_2.tra");

// Tasks

task t1("T1");

task t2("T2");

// Resources

resource_n_tasks_fixed_priority_preemptive cpu("CPU",2);

// Event sinks

output_display display_1("O1");

output_display display_2("O2");

// Task mapping

cpu.assign_task(t1,0,sc_time(80,SC_MS),1);

cpu.assign_task(t2,1,sc_time(200,SC_MS),2);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2(MAXBUFFER);

// Dummy buffers for event sinks

sc_fifo<event_token> dummy_buffer_display_1(1);

sc_fifo<event_token> dummy_buffer_display_2(1);

// Port binding

input_generator_1.out(buffer_T1);

t1.in[0](buffer_T1);

t1.out[0](dummy_buffer_display_1);

display_1.in(dummy_buffer_display_1);

input_generator_2.out(buffer_T2);

t2.in[0](buffer_T2);

t2.out[0](dummy_buffer_display_2);

display_2.in(dummy_buffer_display_2);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay I2-O2: "

<< sc_time_output(display_2.getmaxlatency("I2")) <<

" (event no. " << display_2.getseqn1oofmaxlatency("I2") << ")\n";

return 0;

}

132 Chapter C

SymTA/S

XML (context-blind)

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="no"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="200" unit="ms" />

</PJD>

<PJD name="I2">

<period value="1000" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T1" />

<link src="T1" dest="O1" />

</task_graph>

<task_graph>

<link src="I2" dest="T2" />

<link src="T2" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU">

<wcet value="80" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU">

<wcet value="200" unit="ms" />

<priority> 2 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I2" dest="O2" />

</observe>

</performance_analysis>

Case studies - System models 133

C.6 Models case study 6: Workload correlations

MPA-RTC
% Author(s): E. Wandeler

% Copyright 2004-2006 Computer Engineering and Networks Laboratory (TIK)

% ETH Zurich, Switzerland.

% All rights reserved.

auS1 = pjdu(4,15,1);

alS1 = pjdl(4,15,1);

auS2 = pjdu(6,1);

alS2 = pjdl(6,1);

buCPU1 = fs(6);

blCPU1 = fs(6);

buCPU2 = fs(6);

blCPU2 = fs(6);

[auoT1e,aloT1e,bu,bl] = puregpc(auS1,alS1,buCPU1./5,blCPU1./20,1);

[auoT1r,aloT1r,bu,bl] = puregpc(auS1.*20,alS1.*5,buCPU1,blCPU1,1);

auiT2WCC = ceil(auoT1r./5).*5+10;

aliT2WCC = floor(aloT1r./20).*20;

auiT2WLT = ceil(auoT1e).*15;

aliT2WLT = floor(aloT1e).*5;

[au,al,buoCPU2WCC,bloCPU2WCC] = puregpc(min(auiT2WCC,auiT2WLT),max(aliT2WCC,aliT2WLT),buCPU2,blCPU2,1);

[au,al,buoCPU2WLT,bloCPU2WLT] = puregpc(auiT2WLT,aliT2WLT,buCPU2,blCPU2,1);

dWLT = h(auS2.*5,bloCPU2WLT);

dWCC = h(auS2.*5,bloCPU2WCC);

disp([’d_WLT=’ num2str(dWLT) ’, d_WCC=’ num2str(dWCC)])

MAST (workload corr. blind)

Model (

Model_Name => workload_correlation,

Model_Date => 2005-12-13);

Processing_Resource (

Type => Regular_Processor,

Name => CPU1,

Speed_Factor => 6);

Processing_Resource (

Type => Regular_Processor,

Name => CPU2,

Speed_Factor => 25);

Scheduler (

Type => Primary_Scheduler,

Name => CPU1,

Host => CPU1,

Policy =>

(Type => Fixed_Priority));

Scheduler (

Type => Primary_Scheduler,

Name => CPU2,

Host => CPU2,

Policy =>

(Type => Fixed_Priority));

Scheduling_Server (

Type => Regular,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU1);

Scheduling_Server (

Type => Regular,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

Preassigned => Yes),

Scheduler => CPU2);

Scheduling_Server (

Type => Regular,

Name => T3,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Scheduler => CPU2);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 5,

Worst_Case_Execution_Time => 20);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 5,

Worst_Case_Execution_Time => 15);

Operation (

Type => Simple,

Name => T3,

Best_Case_Execution_Time => 5,

Worst_Case_Execution_Time => 5);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => in,

Period => 4,

Max_Jitter => 15)),

Internal_Events => (

(Type => regular,

name => T1_out),

(Type => regular,

name => T2_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => in))),

134 Chapter C

Event_Handlers => (

(Type => Activity,

Input_Event => in,

Output_Event => T1_out,

Activity_Operation => T1,

Activity_Server => T1),

(Type => Activity,

Input_Event => T1_out,

Output_Event => T2_out,

Activity_Operation => T2,

Activity_Server => T2)));

Transaction (

Type => Regular,

Name => transact2,

External_Events => (

(Type => Periodic,

Name => in,

Period => 6,

Max_Jitter => 1)),

Internal_Events => (

(Type => regular,

name => T3_out,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => in))),

Event_Handlers => (

(Type => Activity,

Input_Event => in,

Output_Event => T3_out,

Activity_Operation => T3,

Activity_Server => T3)));

Uppaal

x<=P && y<=P

x<=P && y<=J

z>D && pending>0
BinBUF1++, pending--,
snd++, z=0

z>D && pending>0

BinBUF1++, pending--,
snd++, z=0

x==P
pending++,
x=0

z>D && pending>0
AinBUF1++, pending--,
snd++, z=0

y==P && snd>0
snd--, y=0

y==J && snd>0

snd--, y=0

pending++

x==P
pending++,
x=0

z>D && pending>0
AinBUF1++, pending--,
snd++, z=0

L1

x<=J

L2

x<=P

seen1 seen0

L0

x<=P

m!=0
out?

n--, m:=(m<0?m:m-1)

arr2++, n++

x>=P
x:=0

m==-1
arr2++, m:=n, n++, y:=0

m==0
out?

m:=-1, n--
m==0
out?

m:=-1, n--

m!=0
out?

n--, m:=(m<0?m:m-1)

x:=0

B

x<=WCET_T1_B

A
x<=WCET_T1_A

idle

x==WCET_T1_B
req_T2++, BinBUF2++

x==WCET_T1_A
req_T2++, AinBUF2++

prIB!

x=0

prIA!

x=0

BUFFER_T1_too_small

BA

BBABBAAA

BBBABBBABAABBBAABABAAAAA

BBBBABBBBABBAABBBBABABABBAABAAABBBBAABBABABAAABABBAAABAABAAAAAAA

AinBUF1==2 || BinBUF1==4
hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==3 || BinBUF1==3
hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==1 || BinBUF1==5

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==2 || BinBUF1==4

hurry!

AinBUF1==3 || BinBUF1==3
hurry!

AinBUF1==3 || BinBUF1==3

hurry!

AinBUF1==4 || BinBUF1==2

hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==4 || BinBUF1==2
hurry!

AinBUF1==5 || BinBUF1==1
hurry!

prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--

prIA?

AinBUF1--

prIB?

BinBUF1--

prIA?

AinBUF1--

prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--

prIA?

AinBUF1--
prIB?

BinBUF1--prIA?AinBUF1--
prIB?

BinBUF1--
prIA?

AinBUF1--

prIB?

BinBUF1-- BinBUF1==4
hurry!

AinBUF1==1
hurry!BinBUF1==3

hurry!

AinBUF1==2
hurry!BinBUF1==3hurry!

AinBUF1==2

hurry!
BinBUF1==2

hurry!
AinBUF1==3

hurry!
BinBUF1==3

hurry!

AinBUF1==2hurry!

BinBUF1==2
hurry!

AinBUF1==3
hurry!

BinBUF1==2
hurry!

AinBUF1==3
hurry!

BinBUF1==1
hurry!

prIB?
BinBUF1--

prIA?
AinBUF1--

prIA?
AinBUF1--

prIB?
BinBUF1--

prIB?
BinBUF1--

prIA?
AinBUF1--

prIB?
BinBUF1--

prIA?

AinBUF1--

prIB?
BinBUF1--

prIB?
BinBUF1--

BinBUF1==1
hurry!

BinBUF1==2
hurry!

AinBUF1==2
hurry! BinBUF1==2

hurry!AinBUF1==2
hurry!

BinBUF1==3
hurry!AinBUF1==1

hurry!

BinBUF1==2
hurry!

AinBUF1==1
hurry!

BinBUF1==1
hurry!

prIB?
BinBUF1--

BinBUF1==1
hurry!

prIA?
AinBUF1--

AinBUF1==4
hurry!

prIA?
AinBUF1--

AinBUF1==3
hurry!

prIA?
AinBUF1--

AinBUF1==2
hurry!

prIA?
AinBUF1--

AinBUF1==1
hurry!

Case studies - System models 135

pre_T2_By<=WCET_T2_B

T2_B

x<=WCET_T2_B

idleT3 x<=D

T2_A

x<=WCET_T2_A

pre_T2_Ay<=WCET_T2_A

y==WCET_T2_B

req_T2--, D+=WCET_T2_B

x<D
y:=0

x==D
out!

D:=0, arr2--, x:=0

prIIB!

y==WCET_T2_A

req_T2--, D+=WCET_T2_A

x<D
y:=0

x==D
out!

D:=0, arr2--, x:=0

prIIA!

x==WCET_T2_B
req_T2--

prIIB!

x:=0

arr2>0 && req_T2==0

hurry!

x:=0, D:=WCET_T3

x==D
out!

D:=0, arr2--

prIIA!

x:=0
x==WCET_T2_A

req_T2--

BUFFER_T2_too_small

BA

BBABBAAA

BBBABBBABAABBBAABABAAAAA

BBBBABBBBABBAABBBBABABABBAABAAABBBBAABBABABAAABABBAAABAABAAAAAAA

AinBUF2==2 || BinBUF2==4
hurry!

AinBUF2==4 || BinBUF2==2

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==4 || BinBUF2==2
hurry!

AinBUF2==3 || BinBUF2==3
hurry!

AinBUF2==4 || BinBUF2==2
hurry!

AinBUF2==1 || BinBUF2==5

hurry!

AinBUF2==2 || BinBUF2==4

hurry!

AinBUF2==2 || BinBUF2==4

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==2 || BinBUF2==4

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==4 || BinBUF2==2

hurry!

AinBUF2==2 || BinBUF2==4

hurry!

AinBUF2==3 || BinBUF2==3
hurry!

AinBUF2==3 || BinBUF2==3

hurry!

AinBUF2==4 || BinBUF2==2

hurry!

AinBUF2==4 || BinBUF2==2
hurry!

AinBUF2==4 || BinBUF2==2
hurry!

AinBUF2==5 || BinBUF2==1
hurry!

prIIB?

BinBUF2--

prIIA?

AinBUF2--
prIIB?

BinBUF2--

prIIA?

AinBUF2--

prIIB?

BinBUF2--

prIIA?

AinBUF2--

prIIB?

BinBUF2--

prIIA?

AinBUF2--
prIIB?

BinBUF2--

prIIA?

AinBUF2--
prIIB?

BinBUF2--prIIA?AinBUF2--
prIIB?

BinBUF2--
prIIA?

AinBUF2--

prIIB?

BinBUF2-- BinBUF2==4
hurry!

AinBUF2==1
hurry!BinBUF2==3

hurry!

AinBUF2==2
hurry!BinBUF2==3hurry!

AinBUF2==2

hurry!
BinBUF2==2

hurry!
AinBUF2==3

hurry!
BinBUF2==3

hurry!

AinBUF2==2hurry!

BinBUF2==2
hurry!

AinBUF2==3
hurry!

BinBUF2==2
hurry!

AinBUF2==3
hurry!

BinBUF2==1
hurry!

prIIB?
BinBUF2--

prIIA?
AinBUF2--

prIIA?
AinBUF2--

prIIB?
BinBUF2--

prIIB?
BinBUF2--

prIIA?
AinBUF2--

prIIB?
BinBUF2--

prIIA?

AinBUF2--

prIIB?
BinBUF2--

prIIB?
BinBUF2--

BinBUF2==1
hurry!

BinBUF2==2
hurry!

AinBUF2==2
hurry! BinBUF2==2

hurry!AinBUF2==2
hurry!

BinBUF2==3
hurry!AinBUF2==1

hurry!

BinBUF2==2
hurry!

AinBUF2==1
hurry!

BinBUF2==1
hurry!

prIIB?
BinBUF2--

BinBUF2==1
hurry!

prIIA?
AinBUF2--

AinBUF2==4
hurry!

prIIA?
AinBUF2--

AinBUF2==3
hurry!

prIIA?
AinBUF2--

AinBUF2==2
hurry!

prIIA?
AinBUF2--

AinBUF2==1
hurry!

PESIMDES

For conciseness we do not report in this appendix the SystemC source code
of the ad-hoc simulator implemented for this case study. The complete source
code is available online.2

2http://www.mpa.ethz.ch

136 Chapter C

SymTA/S

XML (workload corr. blind)

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU1" preemptive="yes"/>

<FP name="CPU2" preemptive="yes"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="4" unit="ms" />

<jitter value="15" unit="ms" />

<min_interarr value="1" unit="ms" />

</PJD>

<PJD name="I2">

<period value="6" unit="ms" />

<jitter value="1" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

<task name="T3" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T1" />

<link src="T1" dest="T2" />

<link src="T2" dest="O1" />

</task_graph>

<task_graph>

<link src="I2" dest="T3" />

<link src="T3" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU1">

<wcet value="3.3333" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU2">

<wcet value="2.5" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T3" resource="CPU2">

<wcet value="0.8333" unit="ms" />

<priority> 2 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I2" dest="O2" />

</observe>

</performance_analysis>

Case studies - System models 137

C.7 Models case study 7: Data dependencies

MPA-RTC

p_S0 = 80; p_S1 = 50;

b_CPU0 = 1;

ed_T0 = 15; ed_T1 = 20; ed_T2 = 10;

auo0_S0 = pjdu(p_S0);

alo0_S0 = pjdl(p_S0);

auo0_S1 = pjdu(p_S1);

alo0_S1 = pjdl(p_S1);

buo0_CPU0 = fs(b_CPU0);

blo0_CPU0 = fs(b_CPU0);

[auo1_S0 alo1_S0 buo1_CPU0 blo1_CPU0] = gpc(auo0_S0, alo0_S0, buo0_CPU0, blo0_CPU0, ed_T0);

[auo1_S1 alo1_S1 buo2_CPU0 blo2_CPU0] = gpc(auo0_S1, alo0_S1, buo1_CPU0, blo1_CPU0, ed_T1);

[auo2_S1 alo2_S1 buo3_CPU0 blo3_CPU0] = gpc(auo1_S1, alo1_S1, buo2_CPU0, blo2_CPU0, ed_T2);

d_add = del(auo0_S1,blo1_CPU0,ed_T1) + del(auo1_S1,blo2_CPU0,ed_T2);

d_conv = del(auo0_S1,blo1_CPU0,ed_T1,blo2_CPU0,ed_T2);

d = min(d_conv,d_add);

MAST

Model (

Model_Name => data_dependency,

Model_Date => 2006-01-19);

Processing_Resource (

Type => Fixed_Priority_Processor,

Name => CPU1);

Scheduling_Server (

Type => Fixed_Priority,

Name => T1,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 3,

Preassigned => Yes),

Server_Processing_Resource => CPU1);

Scheduling_Server (

Type => Fixed_Priority,

Name => T2,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 2,

Preassigned => Yes),

Server_Processing_Resource => CPU1);

Scheduling_Server (

Type => Fixed_Priority,

Name => T3,

Server_Sched_Parameters => (

Type => Fixed_Priority_policy,

The_Priority => 1,

Preassigned => Yes),

Server_Processing_Resource => CPU1);

Operation (

Type => Simple,

Name => T1,

Best_Case_Execution_Time => 29,

Worst_Case_Execution_Time => 29);

Operation (

Type => Simple,

Name => T2,

Best_Case_Execution_Time => 20,

Worst_Case_Execution_Time => 20);

Operation (

Type => Simple,

Name => T3,

Best_Case_Execution_Time => 10,

Worst_Case_Execution_Time => 10);

Transaction (

Type => Regular,

Name => transact1,

External_Events => (

(Type => Periodic,

Name => E1,

Period => 80)),

Internal_Events => (

(Type => regular,

name => O1,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => E1))),

Event_Handlers => (

(Type => Activity,

Input_Event => E1,

Output_Event => O1,

Activity_Operation => T1,

Activity_Server => T1)));

Transaction (

Type => Regular,

Name => transact2,

External_Events => (

(Type => Periodic,

Name => E2,

Period => 50)),

Internal_Events => (

(Type => regular,

name => O2),

(Type => regular,

name => O3,

Timing_Requirements => (

Type => Hard_Global_Deadline,

Deadline => 1000,

Referenced_Event => E2))),

Event_Handlers => (

(Type => Activity,

Input_Event => E2,

Output_Event => O2,

Activity_Operation => T2,

Activity_Server => T2),

(Type => Activity,

Input_Event => O2,

Output_Event => O3,

Activity_Operation => T3,

Activity_Server => T3)));

138 Chapter C

Uppaal

L1

x<=P

L0

x<=P

x>=P
req_T1++, x:=0

req_T1++, x:=0

L1
x<=P

seenL0

x<=P

x>=P
req_T2++, n++, x:=0

x>=P && m==-1
req_T2++, m:=n, n++,
x:=0, y:=0

m!=0
out?

n--, m:=(m<0?m:m-1)

m==0
out?

m:=-1, n--

req_T2++, n++, x:=0

pre_T1T2T3

z<=WCET_T1

pre_T2T3

y<=D pre_T1T3

y<=WCET_T1

T3
x<=V

idleT2

x<=D

T1

x<=WCET_T1
pre_T1T2

y<=WCET_T1

z==WCET_T1
req_T1--,
D+=WCET_T1

y==D
D:=0, req_T2--, req_T3++, y:=0, V+=D

y<D
z:=0

req_T1>0
hurry!

y==D
req_T2--, req_T3++,
V+=D, D:=0

x<V
y:=0

x==V
out!

V:=0, req_T3--,
x:=0

req_T2>0 and
req_T1==0

hurry!
D:=WCET_T2

y==WCET_T1
req_T1--, V+=WCET_T1

x<V

y:=0

x==V
out!
V:=0, req_T3--, x:=0

req_T1>0
hurry!

x==V
out!

V:=0, req_T3--

req_T3>0 and
req_T2==0 and
req_T1==0hurry!

x:=0, V:=WCET_T3

x==D
D:=0, req_T2--, req_T3++, x:=0

x<D
y:=0

req_T1>0
hurry!

req_T2>0 and req_T1==0

hurry!

x:=0, D:=WCET_T2

x==D
D:=0,
req_T2--, req_T3++

req_T1>0

hurry!

x:=0

x==WCET_T1
req_T1--

y==WCET_T1
req_T1--,
D+=WCET_T1

hurry?

Case studies - System models 139

PESIMDES

#include "pesimdes.h"

#define MAXBUFFER 1000

bool verbose = false;

int sc_main (int argc , char *argv[]) {

// initialize the random number generator

srand(-11);

// Module instantiations

// Event stream generators

input_periodic input_generator_1("I1",sc_time(80,SC_MS),"input_trace_1.tra");

input_periodic input_generator_2("I2",sc_time(50,SC_MS),"input_trace_2.tra");

// Tasks

task t1("T1");

task t2("T2");

task t2("T3");

// Resources

resource_n_tasks_fixed_priority_preemptive cpu("CPU",3);

// Event sinks

output_display display_1("O1");

output_display display_2("O2");

// Task mapping

cpu.assign_task(t1,0,sc_time(15,SC_MS),1);

cpu.assign_task(t2,1,sc_time(20,SC_MS),2);

cpu.assign_task(t2,2,sc_time(10,SC_MS),3);

// Channel instantiations

// Task activation buffers

my_sc_fifo<event_token> buffer_T1(MAXBUFFER);

my_sc_fifo<event_token> buffer_T2(MAXBUFFER);

my_sc_fifo<event_token> buffer_T3(MAXBUFFER);

// Dummy buffers for event sinks

sc_fifo<event_token> dummy_buffer_display_1(1);

sc_fifo<event_token> dummy_buffer_display_2(1);

// Port binding

input_generator_1.out(buffer_T1);

t1.in[0](buffer_T1);

t1.out[0](dummy_buffer_display_1);

display_1.in(dummy_buffer_display_1);

input_generator_2.out(buffer_T2);

t2.in[0](buffer_T2);

t2.out[0](buffer_T3);

t3.in[0](buffer_T3);

t3.out[0](dummy_buffer_display_2);

display_2.in(dummy_buffer_display_2);

// Start simulation

sc_start(100000,SC_MS);

// Print performance results

cout << "\n Max. observed End-to-End Delay I2-O2: "

<< sc_time_output(display_2.getmaxlatency("I2")) <<

" (event no. " << display_2.getseqn1oofmaxlatency("I2") << ")\n";

return 0;

}

140 Chapter C

SymTA/S

XML

<?xml version="1.0" encoding="ISO-8859-1"?>

<performance_analysis xmlns:xsi=

"http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="perfest.xsd">

<system>

<resources>

<FP name="CPU" preemptive="no"/>

</resources>

<event_sources>

<PJD name="I1">

<period value="80" unit="ms" />

</PJD>

<PJD name="I2">

<period value="50" unit="ms" />

</PJD>

</event_sources>

<event_sinks>

<event_sink name="O1" />

<event_sink name="O2" />

</event_sinks>

<tasks>

<task name="T1" />

<task name="T2" />

<task name="T3" />

</tasks>

<task_graphs>

<task_graph>

<link src="I1" dest="T1" />

<link src="T1" dest="O1" />

</task_graph>

<task_graph>

<link src="I2" dest="T2" />

<link src="T2" dest="T3" />

<link src="T3" dest="O2" />

</task_graph>

</task_graphs>

<binding>

<map task="T1" resource="CPU">

<wcet value="15" unit="ms" />

<priority> 1 </priority>

</map>

<map task="T2" resource="CPU">

<wcet value="20" unit="ms" />

<priority> 2 </priority>

</map>

<map task="T3" resource="CPU">

<wcet value="10" unit="ms" />

<priority> 3 </priority>

</map>

</binding>

</system>

<observe>

<latency src="I2" dest="O2" />

</observe>

</performance_analysis>

Appendix D

Task description (German)

Master thesis

for 1 or 2 students in Department D-ITET/D-INFK/D-BEPR

Evaluation und Vergleich von Methoden zur Performance Analyse

von Real-Time Embedded Systems

Während des Designprozesses komplexer Eingebetteter Systeme mit Echtzeit-
Bedingungen werden viele Fragen aufgeworfen. Ein Designer ist z.B. typ-
ischerweise daran interessiert, ob die Zeiteigenschaften einer bestimmten
System-Architektur die Echtzeit-Bedingungen erfüllen werden, wie stark ver-
schiedene On-Chip-Kommunikationskanäle ausgelastet sein werden, welcher
Bus oder Prozessor der Flaschenhals sein wird, oder was die On-Chip-
Speicheranforderungen sein werden. In den letzten Jahren wurde am TIK
und auch weltweit viel Forschung betrieben, um Modelle und Methoden zu
entwickeln, welche es erlauben die oben genannten Eigenschaften eines Sys-
tems schon in einer sehr frühen Designphase zu analysieren. Während auf
diesem Gebiet der sogenannten System Level Performance Analyse in den
letzten Jahren viele Fortschritte gemacht wurden, existieren bis heute noch
keine Studien, welche die verschiedenen Methoden auf wissenschaftlicher Ebene
evaluieren und miteinander vergleichen.

Bei dieser Masterarbeit sollen in einem ersten Schritt sinnvolle Kriterien
zur Beurteilung von Performance Analyse Methoden entwickelt werden. An-
hand dieser Kriterien sollen dann in einem weiteren Schritt eine Anzahl ak-
tueller Methoden evaluiert werden. Basierend aud diesen Evaluationen sollen
die verschiedenen Methoden schliesslich verglichen werden, und Stärken und
Schwächen der verschiedenen Methoden identifiziert werden.

142 Chapter D

Kind of Work: 50% Theorie, 30% Konzept, 20% Implementierung
Requirements: Interesse an wissenschaftlicher Arbeit
Contact Person: Ernesto Wandeler, ETZ G75, +41 44 63 24528
Tutors: Ernesto Wandeler, Simon Künzli
Professor: Prof. Lothar Thiele

Bibliography

[1] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[2] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and
Wang Yi. Times - a tool for modelling and implementation of embedded
systems. In TACAS ’02: Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 460–464, London, UK, 2002. Springer-Verlag.

[3] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on up-

paal. In Marco Bernardo and Flavio Corradini, editors, Formal Methods
for the Design of Real-Time Systems: 4th International School on For-
mal Methods for the Design of Computer, Communication, and Software
Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236. Springer–
Verlag, September 2004.

[4] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of
deterministic queuing systems for the internet. Springer-Verlag New York,
Inc., New York, NY, USA, 2001.

[5] Giorgio C. Buttazzo and Giorgio Buttanzo. Hard Real-Time Computing
Systems: Predictable Scheduling Algorithms and Applications. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1997.

[6] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for
analysing system properties in platform-based embedded system designs.
In Proc. 6th Design, Automation and Test in Europe (DATE), pages 190–
195, Munich, Germany, March 2003.

[7] Seamless (Mentor Graphics). http://www.mentor.com/products/fv/

hwsw_coverification/seamless/index.cfm.

[8] Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time
Computing. John Wiley & Sons, Inc., New York, NY, USA, 1996.

144 Chapter D

[9] Martijn Hendriks and Marcel Verhoef. Timed automata based analysis
of embedded system architectures. Technical Report ICIS-R06003, ICIS,
Radboud University, Nijmegen, The Netherlands, 2006.

[10] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. Sys-
tem level performance analysis – the symta/s approach. IEE Proceedings
- Computers and Digital Techniques, 152(2):148–166, 2005.

[11] Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-
time system. BCS Computer Journal, 29(5):390–395, 1986.

[12] Simon Künzli and Lothar Thiele. Generating event traces based on arrival
curves. In Proc. of 13th GI/ITG Conference on Measurement, Modeling,
and Evaluation of Computer and Communication Systems (MMB), March
2006.

[13] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the ACM, 20(1):46–61,
1973.

[14] Peter Marwedel. Embedded System Design. Kluwer Academic Publishers,
2003.

[15] A. Maxiaguine, S. Künzli, and L. Thiele. Workload characterization model
for tasks with variable execution demand. In Proc. 7th Design, Automation
and Test in Europe (DATE), pages 1040–1045, Paris, France, February
2004.

[16] Gonzlez Harbour Medina. Mast: An open environment for modeling, anal-
ysis, and design of real-time systems.

[17] Christer Norström, Anders Wall, and Wang Yi. Timed automata as task
models for event-driven systems. In RTCSA ’99: Proceedings of the Sixth
International Conference on Real-Time Computing Systems and Applica-
tions, page 182, Washington, DC, USA, 1999. IEEE Computer Society.

[18] ARTIST2 Workshop on Distributed Embedded Systems 2005. http://

www.tik.ee.ethz.ch/~leiden05/.

[19] The Open SystemC Initiative (OSCI). http://www.systemc.org.

[20] Simon Perathoner, Ernesto Wandeler, and Lothar Thiele. Timed automata
templates for distributed embedded system architectures. Technical Re-
port 233, Computer Engineering and Networks Laboratory, Swiss Federal
Institute of Technology, Zurich, Switzerland, November 2005.

BIBLIOGRAPHY 145

[21] Paul Pop, Petru Els, and Zebo Peng. Performance estimation for embedded
systems with data and control dependencies. In CODES ’00: Proceedings
of the eighth international workshop on Hardware/software codesign, pages
62–66, New York, NY, USA, 2000. ACM Press.

[22] Traian Pop, Petru Eles, and Zebo Peng. Holistic scheduling and analysis of
mixed time/event-triggered distributed embedded systems. In CODES ’02:
Proceedings of the tenth international symposium on Hardware/software
codesign, pages 187–192, New York, NY, USA, 2002. ACM Press.

[23] Kai Richter, Marek Jersak, and Rolf Ernst. A formal approach to mpsoc
performance verification. Computer, 36(4):60–67, 2003.

[24] System Studio (Synopsis). http://www.synopsys.com/products/

cocentric_studio/cocentric_studio.html.

[25] Lothar Thiele and Ernesto Wandeler. Performance analysis of distributed
embedded systems. In Richard Zurawski, editor, Embedded Systems Hand-
book. CRC Press, 2005.

[26] Ken Tindell. Adding time-offsets to schedulability analysis. Technical
Report YCS-94-221, University of York, Computer Science Dept.

[27] Ken Tindell and John Clark. Holistic schedulability analysis for distributed
hard real-time systems. Microprocess. Microprogram., 40(2-3):117–134,
1994.

[28] Ernesto Wandeler, Alexander Maxiaguine, and Lothar Thiele. Quantita-
tive characterization of event streams in analysis of hard real-time appli-
cations. Real-Time Systems, 29(2-3):205–225, 2005.

[29] Ernesto Wandeler and Lothar Thiele. Abstracting functionality for mod-
ular performance analysis of hard real-time systems. In Asia and South
Pacific Desing Automation Conference (ASP-DAC), pages pages 697–702,
2005.

[30] Ernesto Wandeler and Lothar Thiele. Characterizing workload correla-
tions in multi processor hard real-time systems. In IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 46–55, 2005.

[31] SoC Designer with MaxSim Technology (ARM). http://www.arm.com/

products/DevTools/MaxSim.html.

146 Chapter D

[32] Ti-Yen Yen and Wayne Wolf. Performance estimation for real-time dis-
tributed embedded systems. In ICCD ’95: Proceedings of the 1995 Inter-
national Conference on Computer Design, pages 64–71, Washington, DC,
USA, 1995. IEEE Computer Society.

